Solveeit Logo

Question

Mathematics Question on Sequence and series

If the sum of the series 12+2.22+32+2.42+52+...2.62+...1^{2} + 2.2^{2} + 3^{2} + 2.4^{2} + 5^{2}+ ... 2.6^{2} +... upto n terms, when n is even, is n(n+1)22\frac{n\left(n+1\right)^{2}}{2}, then the sum of the series, when n is odd, is

A

n2(n+1) n^{2}\left(n+1\right)

B

n2(n1)2 \frac{n^{2}\left(n-1\right)}{2}

C

n2(n+1)2 \frac{n^{2}\left(n+1\right)}{2}

D

n2(n1) n^{2}\left(n-1\right)

Answer

n2(n+1)2 \frac{n^{2}\left(n+1\right)}{2}

Explanation

Solution

If n is odd, the required sum is 12+2.22+32+2.42++2(n1)2+n21^{2} + 2.2^{2} + 3^{2} + 2.4^{2} +\ldots\ldots+ 2 \left(n -1\right)^{2} + n^{2} =(n1)(n1+1)22+n2= \frac{\left(n-1\right)\left(n-1+1\right)^{2}}{2}+n^{2}\quad (n1\because n-1 is even) =(n12+1)n2=n2(n+1)2= \left(\frac{n-1}{2}+1\right)n^{2} = \frac{n^{2}\left(n+1\right)}{2}