Solveeit Logo

Question

Question: If the sum of the roots of the quadratic equation \(ax^{2} + bx + c = 0\) is equal to the sum of th...

If the sum of the roots of the quadratic equation

ax2+bx+c=0ax^{2} + bx + c = 0 is equal to the sum of the squares of their

reciprocals, then a/c,b/a,c/ba/c,b/a,c/b are in

A

A.P.

B

G.P.

C

H.P.

D

None of these

Answer

H.P.

Explanation

Solution

As given, if α, β be the roots of the quadratic equation, then

α+β=1α2+1β2=(α+β)22αβα2β2\alpha + \beta = \frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} = \frac{(\alpha + \beta)^{2} - 2\alpha\beta}{\alpha^{2}\beta^{2}}

ba=b2/a22c/ac2/a2=b22acc2- \frac{b}{a} = \frac{b^{2}/a^{2} - 2c/a}{c^{2}/a^{2}} = \frac{b^{2} - 2ac}{c^{2}}

2ac=b2c2+ba=ab2+bc2ac2\frac{2a}{c} = \frac{b^{2}}{c^{2}} + \frac{b}{a} = \frac{ab^{2} + bc^{2}}{ac^{2}}2a2c=ab2+bc22a^{2}c = ab^{2} + bc^{2}

2ab=bc+ca\frac{2a}{b} = \frac{b}{c} + \frac{c}{a}

ca,ab,bc\frac{c}{a},\frac{a}{b},\frac{b}{c} are in A.P. ⇒ ac,ba,cb\frac{a}{c},\frac{b}{a},\frac{c}{b} are in H.P.