Solveeit Logo

Question

Question: If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the a...

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum when the angle of between them is π3.\dfrac{\pi }{3}.

Explanation

Solution

Hint: For solving this question, first let the length of the hypotenuse of the right triangle be ‘x’ and the height of the right angle be ‘y’. By using the Pythagoras theorem, we find the base of the right-angle triangle and then the area of a triangle. By using this methodology, we get the value of x and y and proved that the area of the triangle is maximum when the angle of between them is π3.\dfrac{\pi }{3}.

Complete step-by-step soltuion -
__
Let, the height of the hypotenuse of the right-angle triangle be ‘x’ and the height of the right-angle triangle be ‘y’.
By applying the Pythagoras theorem which can be stated as: h2=b2+p2{{h}^{2}}={{b}^{2}}+{{p}^{2}}
On putting h = x and p = y,
The base of the right-angled triangle is:
x2=b2+y2 b2=x2y2 b=x2y2 \begin{aligned} & {{x}^{2}}={{b}^{2}}+{{y}^{2}} \\\ & {{b}^{2}}={{x}^{2}}-{{y}^{2}} \\\ & \therefore b=\sqrt{{{x}^{2}}-{{y}^{2}}} \\\ \end{aligned}
Then, the area of the triangle =12×base×height=\dfrac{1}{2}\times base\times height
Area of the triangle =12×x2y2×y=\dfrac{1}{2}\times \sqrt{{{x}^{2}}-{{y}^{2}}}\times y
But it is given,
x+y=p x=py \begin{aligned} & x+y=p \\\ & \therefore x=p-y \\\ \end{aligned}
Putting the value of x in the area of the right-angle triangle,
Area=12×(py)2y2×y Area=12×yp2+y22pyy2 Area=12×y×p22py \begin{aligned} & \text{Area}=\dfrac{1}{2}\times \sqrt{{{\left( p-y \right)}^{2}}-{{y}^{2}}}\times y \\\ & \text{Area}=\dfrac{1}{2}\times y\sqrt{{{p}^{2}}+{{y}^{2}}-2py-{{y}^{2}}} \\\ & \text{Area}=\dfrac{1}{2}\times y\times \sqrt{{{p}^{2}}-2py} \\\ \end{aligned}
Squaring both the sides, we get:
(Area)2=14×y2×(p22py) A=14×y2×(p22py) A=14p2y212py3 \begin{aligned} & {{\left( \text{Area} \right)}^{2}}=\dfrac{1}{4}\times {{y}^{2}}\times \left( {{p}^{2}}-2py \right) \\\ & {A}'=\dfrac{1}{4}\times {{y}^{2}}\times \left( {{p}^{2}}-2py \right) \\\ & {A}'=\dfrac{1}{4}{{p}^{2}}{{y}^{2}}-\dfrac{1}{2}p{{y}^{3}} \\\ \end{aligned}
For maximum area and minimum area,
dAdy=0 dAdy=14×2p2y12×3py2 dAdy=12p2y32py2 12p2y=32py2 y=p3 x=py x=pp3=2p3 \begin{aligned} & \dfrac{d{A}'}{dy}=0 \\\ & \dfrac{d{A}'}{dy}=\dfrac{1}{4}\times 2{{p}^{2}}y-\dfrac{1}{2}\times 3p{{y}^{2}} \\\ & \dfrac{d{A}'}{dy}=\dfrac{1}{2}{{p}^{2}}y-\dfrac{3}{2}p{{y}^{2}} \\\ & \dfrac{1}{2}{{p}^{2}}y=\dfrac{3}{2}p{{y}^{2}} \\\ & y=\dfrac{p}{3} \\\ & x=p-y \\\ & x=p-\dfrac{p}{3}=\dfrac{2p}{3} \\\ \end{aligned}
For checking the area maximum,
d2Ady2=ddy(14×2p2y12×3py2) d2Ady2=12p212×3p×2y d2Ady2=12p23py \begin{aligned} & \dfrac{{{d}^{2}}{A}'}{d{{y}^{2}}}=\dfrac{d}{dy}\left( \dfrac{1}{4}\times 2{{p}^{2}}y-\dfrac{1}{2}\times 3p{{y}^{2}} \right) \\\ & \dfrac{{{d}^{2}}{A}'}{d{{y}^{2}}}=\dfrac{1}{2}{{p}^{2}}-\dfrac{1}{2}\times 3p\times 2y \\\ & \dfrac{{{d}^{2}}{A}'}{d{{y}^{2}}}=\dfrac{1}{2}{{p}^{2}}-3py \\\ \end{aligned}
Putting y=p3y=\dfrac{p}{3}, we get
d2Ady2=12p23py 12p23p(p3) 12p2p2 12p2 d2Ady2<0 \begin{aligned} & \dfrac{{{d}^{2}}{A}'}{d{{y}^{2}}}=\dfrac{1}{2}{{p}^{2}}-3py \\\ & \Rightarrow \dfrac{1}{2}{{p}^{2}}-3p\left( \dfrac{p}{3} \right) \\\ & \Rightarrow \dfrac{1}{2}{{p}^{2}}-{{p}^{2}} \\\ & \Rightarrow -\dfrac{1}{2}{{p}^{2}} \\\ & \therefore \dfrac{{{d}^{2}}{A}'}{d{{y}^{2}}}<0 \\\ \end{aligned}
Here, the area of the triangle is maximum when
x=2p3 and y=p3x=\dfrac{2p}{3}\text{ and }y=\dfrac{p}{3}
Cosine of the right-angle triangle is the ratio of base to hypotenuse. In our figure, hypotenuse = x and base = y, so
cosθ=yx cosθ=p32×p3 cosθ=12 \begin{aligned} & \cos \theta =\dfrac{y}{x} \\\ & \cos \theta =\dfrac{\dfrac{p}{3}}{2\times \dfrac{p}{3}} \\\ & \cos \theta =\dfrac{1}{2} \\\ \end{aligned}
Therefore, the value of cosθ\cos \theta is 12\dfrac{1}{2}, when θ=π3\theta =\dfrac{\pi }{3}.
Hence, the area is maximum if the angle between the hypotenuse and the side is π3\dfrac{\pi }{3}.

Note: Students must be careful while applying the condition for maximum area. They must use the concept of the second derivative to prove that the area is maximum at the particular value of y. This is the key step and it should not be avoided as most people avoid the second derivative and proceed after the result obtained in the first derivative only.