Solveeit Logo

Question

Question: If the sum of the infinity of the series \[3 + 5r + 7{r^2} + ......\]is \[\dfrac{{44}}{9}\] , find t...

If the sum of the infinity of the series 3+5r+7r2+......3 + 5r + 7{r^2} + ......is 449\dfrac{{44}}{9} , find the value of r.

Explanation

Solution

Here we need to take help of geometric progression and infinite series together.
1. .Sn=(a1r)\left( {\dfrac{a}{{1 - r}}} \right)
After forming a quadratic equation use the given formula for finding root.
2. b±b24ac2a\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}

Complete step-by-step answer:
Let the sum given is denoted by letter s.
s=3+5r+7r2+......s = 3 + 5r + 7{r^2} + ......
rs=3r+5r2+7r3+......rs = 3r + 5{r^2} + 7{r^3} + ...... multiplying both sides by r.
srs=3+2r+2r2+2r3+....s - rs = 3 + 2r + 2{r^2} + 2{r^3} + .... subtracting the two series.
s(1r)=3+2(r+r2+r3+.....)s(1 - r) = 3 + 2(r + {r^2} + {r^3} + .....) taking s common on left side and r common on right side

s(1r)=1+2+2(r+r2+r3+.....) s(1r)=1+2(1+r+r2+r3+.....)  s(1 - r) = 1 + 2 + 2(r + {r^2} + {r^3} + .....) \\\ s(1 - r) = 1 + 2(1 + r + {r^2} + {r^3} + .....) \\\

Now the series 1+r+r2+r3+.....1 + r + {r^2} + {r^3} + ..... is a geometric progression.
Thus, sum of terms in a G.P. is given by sns_n=(a1r)\left( {\dfrac{a}{{1 - r}}} \right)

s(1r)=1+2(a1r) s(1r)=1+2(11r) \Rightarrow s(1 - r) = 1 + 2\left( {\dfrac{a}{{1 - r}}} \right) \\\ \Rightarrow s(1 - r) = 1 + 2\left( {\dfrac{1}{{1 - r}}} \right) \\\

s(1r)=1r+21rs(1 - r) = \dfrac{{1 - r + 2}}{{1 - r}} taking L.C.M.on right side
s(1r)2=3rs{(1 - r)^2} = 3 - r
s(12r+r2)=3rs(1 - 2r + {r^2}) = 3 - r
449(12r+r2)=3r\dfrac{{44}}{9}(1 - 2r + {r^2}) = 3 - r substitute value of s.

44(12r+r2)=9(3r) 4488r+44r2=279r 44r288r+9r+4427=0 44r279r+17=0 \Rightarrow 44(1 - 2r + {r^2}) = 9(3 - r) \\\ \Rightarrow 44 - 88r + 44{r^2} = 27 - 9r \\\ \Rightarrow 44{r^2} - 88r + 9r + 44 - 27 = 0 \\\ \Rightarrow 44{r^2} - 79r + 17 = 0 \\\

Now this equation is in quadratic equation form ax2+bx+c=0a{x^2} + bx + c = 0 having roots to be found using
formula b±b24ac2a\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}.
Here a=44,b=-79 and c=17.putting the values,

r=(79)±(79)24×44×172×44 r=79±6241299288 r=79±324988 r=79±5788 r=79+5788,795788 r=13688,2288 r=1711,14 \Rightarrow r = \dfrac{{ - ( - 79) \pm \sqrt {{{( - 79)}^2} - 4 \times 44 \times 17} }}{{2 \times 44}} \\\ \Rightarrow r = \dfrac{{79 \pm \sqrt {6241 - 2992} }}{{88}} \\\ \Rightarrow r = \dfrac{{79 \pm \sqrt {3249} }}{{88}} \\\ \Rightarrow r = \dfrac{{79 \pm 57}}{{88}} \\\ \Rightarrow r = \dfrac{{79 + 57}}{{88}},\dfrac{{79 - 57}}{{88}} \\\ \Rightarrow r = \dfrac{{136}}{{88}},\dfrac{{22}}{{88}} \\\ \Rightarrow r = \dfrac{{17}}{{11}},\dfrac{1}{4} \\\

Thus, we found two values of r=1711,14\dfrac{{17}}{{11}},\dfrac{1}{4}.

Note: Since the given series is not a G.P. we need to convert it using some mathematical operations
A geometric series is of the form a+ar+ar2+ar3+......a + ar + a{r^2} + a{r^3} + .......