Solveeit Logo

Question

Mathematics Question on Sequence and series

If the sum of the first ten terms of the series
15+265+3325+41025+52501\frac{1}{5} + \frac{2}{65} + \frac{3}{325} + \frac{4}{1025} + \frac{5}{2501}+… is mn\frac{m}{n},
where m and n are co-prime numbers, then m + n is equal to __________.

Answer

The correct answer is 276
Tr=r(2r2)2+1T_r = \frac{r}{(2r^2)^2+1}
=r(2r2+1)2(2r)2= \frac{r}{(2r^2+1)^2-(2r)^2}
=144r(2r2+2r+1)(2r22r+1)= \frac{1}{4} \frac{4r}{(2r^2+2r+1)(2r^2-2r+1)}
S10=14r=110(1(2r22r+1)1(2r2+2r+1))S_{10} = \frac{1}{4} \sum\limits_{r=1}^{10} \left( \frac{1}{(2r^2 - 2r + 1)} - \frac{1}{(2r^2 + 2r + 1)} \right)
=14[115+15113++11811221]= \frac{1}{4} \left[ 1 - \frac{1}{5} + \frac{1}{5} - \frac{1}{13} + \ldots + \frac{1}{181} - \frac{1}{221} \right]
S10=14.220221S_{10} = \frac{1}{4}. \frac{220}{221}
=55221=mn= \frac{55}{221} = \frac{m}{n}
Hence, m+n = 276