Question
Mathematics Question on Sequence and series
If the sum of the first ten terms of the series (153)2+(252)2+(351)2+42+(454)2+...., is 516m, then m is equal to :
A
102
B
101
C
100
D
99
Answer
101
Explanation
Solution
(153)2+(252)2+(351)2+42+(454)2+..... upto 10 terms
=(58)2+(512)2+(516)2+(520)2+(524)2+... upto 10 terms.
(8)2+(12)2+(16)2+... up to 10 terms
Tn[4(n+1)]2 where n varies from 1 to 10.
=16(n2+2n+1)
∑Tn=n=1∑1016(n2+2n+1)
=16[385+55(2)+10]
=16(505)
or
n=1∑10n2=6n(n+1)(2n+1)=610×11×21=385
n=1∑10n=2n(n+1)=210×11=55
n=1∑101=n=10
∴(58)2+(512)2+(516)2+..... upto 10 terms =2516×505
It is given that 2516×505=516m
∴m=5505=101