Solveeit Logo

Question

Mathematics Question on Combinations

If the sum of the coefficients of all the positive powers of x, in the Binomial expansion of (xn+2x5)7\left(x^n+\frac{2}{x^5}\right)^7 is 939, then the sum of all the possible integral values of n is ____________.

Answer

\left(x^n+\frac{2}{x^5}\right)^7$$=$$\sum_{r=0}^7 ^7C_r$$(x^n)^{7-r} \cdot \left(\frac{2}{x^5}\right)^r$$=$$\sum_{r=0}^7 7Cr^7C_r2rx7nnr5r2^r \cdot x^{7n - nr - 5r}

7C020+7C121+7C222+7C323+7C424=9397C_0 \cdot 2^0 + 7C_1 \cdot 2^1 + 7C_2 \cdot 2^2 + 7C_3 \cdot 2^3 + 7C_4 \cdot 2^4 = 939
r=4∴ r = 4
7 nnr5r=0∵ 7\ n–nr–5r = 0
and r = 4 then
n>203n>\frac{20}{3}
and r should not be 5
n<252∴n<\frac{25}{2}
Possible values of n are 7,8,9,10,11,127, 8, 9, 10, 11, 12
Sum of integral value of n=57n=57