Question
Mathematics Question on Combinations
If the sum of the coefficients of all the positive powers of x, in the Binomial expansion of (xn+x52)7 is 939, then the sum of all the possible integral values of n is ____________.
Answer
\left(x^n+\frac{2}{x^5}\right)^7$$=$$\sum_{r=0}^7 ^7C_r$$(x^n)^{7-r} \cdot \left(\frac{2}{x^5}\right)^r$$=$$\sum_{r=0}^7 7Cr⋅2r⋅x7n−nr−5r
7C0⋅20+7C1⋅21+7C2⋅22+7C3⋅23+7C4⋅24=939
∴r=4
∵7 n–nr–5r=0
and r = 4 then
n>320
and r should not be 5
∴n<225
∴ Possible values of n are 7,8,9,10,11,12
∴ Sum of integral value of n=57