Solveeit Logo

Question

Question: If the sum of the coefficients in the expansion of \({{(a+b)}^{n}}=4096\) , then the greatest coeffi...

If the sum of the coefficients in the expansion of (a+b)n=4096{{(a+b)}^{n}}=4096 , then the greatest coefficient in the expansion is
(a) 924
(b) 792
(c) 1594
(d) None of these

Explanation

Solution

Use binomial expansion of (a+b)n{{(a+b)}^{n}} where nn is a positive integer and a,ba,b are real numbers then (a+b)n=nC0an+nC1an1b+nC2an2b2+...+nCn1abn1+nCnbn{{(a+b)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{n-1}}a{{b}^{n-1}}+{}^{n}{{C}_{n}}{{b}^{n}} where nC0,nC1,nC2,...,nCn{}^{n}{{C}_{0}},{}^{n}{{C}_{1}},{}^{n}{{C}_{2}},...,{}^{n}{{C}_{n}} are known as binomial coefficients. Put a=1a=1 and b=1b=1 in the given expansion. The greatest coefficient in the expansion will be the value of the middle coefficient.

Complete step by step answer:
In the question it is given that the sum of the coefficients in the expansion of (a+b)n=4096{{(a+b)}^{n}}=4096 . Now we will expand (a+b)n{{(a+b)}^{n}} using binomial expansion (a+b)n=nC0an+nC1an1b+nC2an2b2+...+nCn1abn1+nCnbn{{(a+b)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{n-1}}a{{b}^{n-1}}+{}^{n}{{C}_{n}}{{b}^{n}} where nn is a positive integer and a,ba,b are real number and nC0,nC1,nC2,...,nCn{}^{n}{{C}_{0}},{}^{n}{{C}_{1}},{}^{n}{{C}_{2}},...,{}^{n}{{C}_{n}} are binomial coefficients.
Putting a=1a=1 and b=1b=1 in the given expansion of (a+b)n{{(a+b)}^{n}} we get,
(1+1)n=nC0(1)n+nC1(1)n1(1)+nC2(1)n2(1)2+...+nCn1(1)(1)n1+nCn(1)n (2)n=nC0+nC1+nC2+...+nCn1+nCn \begin{aligned} & {{(1+1)}^{n}}={}^{n}{{C}_{0}}{{(1)}^{n}}+{}^{n}{{C}_{1}}{{(1)}^{n-1}}(1)+{}^{n}{{C}_{2}}{{(1)}^{n-2}}{{(1)}^{2}}+...+{}^{n}{{C}_{n-1}}(1){{(1)}^{n-1}}+{}^{n}{{C}_{n}}{{(1)}^{n}} \\\ & {{(2)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+...+{}^{n}{{C}_{n-1}}+{}^{n}{{C}_{n}} \\\ \end{aligned}
We are given that sum of coefficients nC0+nC1+nC2+...+nCn1+nCn{}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+...+{}^{n}{{C}_{n-1}}+{}^{n}{{C}_{n}} is equal to 4096. So the above equation now becomes,
(2)n=4096{{(2)}^{n}}=4096
We will try to write 4096 as the power of 2 so that we can get the value of nn by comparing both sides of the equation.
(2)n=(2)12{{(2)}^{n}}={{(2)}^{12}}
So the value of n=12,n=12, which is an even number. This value of n implies there are 13 terms in total in the expansion of (a+b)12{{(a+b)}^{12}} . In 13 terms the middle term’s coefficient has the greatest value. That is
nCn2=12C122=12C6{}^{n}{{C}_{\dfrac{n}{2}}}={}^{12}{{C}_{\dfrac{12}{2}}}={}^{12}{{C}_{6}}
Thus coefficient 12C6{}^{12}{{C}_{6}} is the greatest value. Solving 12C6{}^{12}{{C}_{6}} we get,
12C6=12!6!(126)! =12!(6!)(6!) \begin{aligned} & {}^{12}{{C}_{6}}=\dfrac{12!}{6!(12-6)!} \\\ & =\dfrac{12!}{(6!)(6!)} \\\ \end{aligned}
After solving the factorial value we get the value of 12C6{}^{12}{{C}_{6}} as,
12C6=12×11×10×9×8×76×5×4×3×2×1 =924 \begin{aligned} & {}^{12}{{C}_{6}}=\dfrac{12\times 11\times 10\times 9\times 8\times 7}{6\times 5\times 4\times 3\times 2\times 1} \\\ & =924 \\\ \end{aligned}
Therefore the value of 12C6=924{}^{12}{{C}_{6}}=924 which is the greatest coefficient value in the expansion of (a+b)n{{(a+b)}^{n}} .

So, the correct answer is “Option A”.

Note: Binomial expansion of (a+b)n{{(a+b)}^{n}} where nn is a positive integer and a,ba,b are real numbers then (a+b)n=nC0an+nC1an1b+nC2an2b2+...+nCn1abn1+nCnbn{{(a+b)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{n-1}}a{{b}^{n-1}}+{}^{n}{{C}_{n}}{{b}^{n}} where nC0,nC1,nC2,...,nCn{}^{n}{{C}_{0}},{}^{n}{{C}_{1}},{}^{n}{{C}_{2}},...,{}^{n}{{C}_{n}} are known as binomial coefficients. If we have to expand (a+b)n{{(a+b)}^{n}} in the binomial expansion then the middle terms coefficient will be the greatest value that is if n is even then nCn2{}^{n}{{C}_{\dfrac{n}{2}}} will give the greatest value.