Solveeit Logo

Question

Mathematics Question on Trigonometry

If the sum of solutions of the system of equations 2sin2θ – cos2θ = 0 and 2cos2θ + 3sinθ = 0 in the interval [0, 2π] is kπ, then k is equal to _______.

Answer

The correct answer is 3
Equation (1)
2sin2θ=12sin2θ2\sin^2\theta=1–2\sin^2\theta
sin2θ=14⇒\sin^2\theta=\frac{1}{4}
sinθ=±12⇒\sin⁡\theta=±\frac{1}{2}
θ=π6,5π6,7π6,11π6⇒ \theta= \frac{\pi }{6},\frac{5\pi}{6},\frac{7 \pi}{6},\frac{11\pi}{6}
Equation(2)
2cos2θ+3sinθ=02\cos^2\theta+3\sin \theta=0
2sin2θ3sinθ2=0⇒2\sin^2\theta–3\sin \theta–2=0
2sin2θ4sinθ+sinθ2=0⇒2\sin^2 \theta–4\sin \theta+\sin \theta–2=0
(sinθ2)(2sinθ+1)=0⇒(\sin \theta–2)(2\sin \theta+1)=0
sinθ=12⇒\sin⁡ \theta=\frac{−1}{2}
θ=7π6,11π6⇒ \theta =\frac{7 \pi}{6},\frac{11 \pi}{6}
Hence, the Sum of solutions =7π+11π6=\frac{7 \pi +11 \pi}{6}
=18π6=\frac{18 \pi}{6}
=3π=\frac{3}{\pi}
k=3∴ k =3