Solveeit Logo

Question

Question: If the sum of n terms of two Arithmetic series are in the ratio (7n + 1) : (4n + 27), then their 11<...

If the sum of n terms of two Arithmetic series are in the ratio (7n + 1) : (4n + 27), then their 11th terms are in the ratio –

A

¾

B

4/3

C

78/61

D

None

Answer

4/3

Explanation

Solution

SnSn=7n+14n+27n=2.11l=21\frac { \mathrm { S } _ { \mathrm { n } } } { \mathrm { S } _ { \mathrm { n } } ^ { \prime } } = \frac { 7 \mathrm { n } + 1 } { 4 \mathrm { n } + 27 } \xrightarrow { \mathrm { n } = 2.11 - \mathrm { l } = 21 }

= 7×21+14×21+27=148111=43\frac { 7 \times 21 + 1 } { 4 \times 21 + 27 } = \frac { 148 } { 111 } = \frac { 4 } { 3 }