Solveeit Logo

Question

Question: If the sum of \(n\) terms of an A.P. is \(n A + n ^ { 2 } B\) , where \(A , B\) are constants, then...

If the sum of nn terms of an A.P. is nA+n2Bn A + n ^ { 2 } B , where A,BA , B are constants, then its common difference will be.

A

ABA - B

B

A+BA + B

C
D

2B2 B

Answer

2B2 B

Explanation

Solution

Given that Sn=nA+n2BS _ { n } = n A + n ^ { 2 } B

Putting n=1,2,3,n = 1,2,3 , \ldots \ldots \ldots \ldots we get

S1=A+B,S2=2A+4B,S3=3A+9BS _ { 1 } = A + B , S _ { 2 } = 2 A + 4 B , S _ { 3 } = 3 A + 9 B

Therefore T1=S1=A+B,T2=S2S1=A+3BT _ { 1 } = S _ { 1 } = A + B , T _ { 2 } = S _ { 2 } - S _ { 1 } = A + 3 B

T3=S3S2=A+5BT _ { 3 } = S _ { 3 } - S _ { 2 } = A + 5 B,

Hence the sequence is (A+B),(A+3B),(A+5B),( A + B ) , ( A + 3 B ) , ( A + 5 B ) , \ldots \ldots \ldots

Here a=A+Ba = A + B and common difference d=2Bd = 2 B.