Solveeit Logo

Question

Question: If the sum of first (p terms) of an AP is q and if the sum of the first q term of an \(\text{AP}=\te...

If the sum of first (p terms) of an AP is q and if the sum of the first q term of an AP=p\text{AP}=\text{p}. Show that
Sum (p+q)\left( \text{p}+\text{q} \right) term is -[(p+q)]\left[ \left( \text{p}+\text{q} \right) \right]

Explanation

Solution

Use the “formulae” for the first n term of an AP given by
Sn=n2[2a+(n1)d]{{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]
Where a is the first term of AP
d is the common difference
Try to find a relation between the sum of first p, q and (p+q)\left( \text{p}+\text{q} \right) terms and get the result.

Complete step-by-step answer:
As given in the question the sum of first P terms of A is q
Sp=q\therefore {{\text{S}}_{\text{p}}}=\text{q}
Using the formula given in the hint for the sum we get
p2 [2a+(p1)d]=q\dfrac{\text{p}}{2}\ \left[ 2\text{a}+\left( \text{p}-1 \right)\text{d} \right]=\text{q} -(1)
Where a is first term of AP
D is the common difference
Similarly the sum of first q term of A is equal to q
Sq=p\therefore {{\text{S}}_{\text{q}}}=\text{p}
q2 [2a+(q1)d]=p\dfrac{\text{q}}{2}\ \left[ 2\text{a}+\left( \text{q}-1 \right)\text{d} \right]=\text{p}-(2)
Now subtracting equation (2) from equation (1), we get
q2 [2a+(q1)d]p2 [2a+(P1)d]=Pq\dfrac{\text{q}}{2}\ \left[ 2\text{a}+\left( \text{q}-1 \right)\text{d} \right]-\dfrac{\text{p}}{2}\ \left[ 2\text{a}+\left( \text{P}-1 \right)\text{d} \right]=\text{P}-\text{q}
12 (2aq+q(q1)d2aPP(p1)d)=pq\dfrac{\text{1}}{2}\ \left( 2\text{aq}+\text{q}\left( \text{q}-1 \right)\text{d}-2a\text{P}-\text{P}\left( \text{p}-1 \right)\text{d} \right)=\text{p}-\text{q}
Now taking the first and third tum together, we get
(2aq2ap)+d(q2q(P2P))=2(pq)\left( 2\text{aq}-2\text{ap} \right)+\text{d}\left( {{\text{q}}^{2}}-\text{q}-\left( {{\text{P}}^{2}}-\text{P} \right) \right)=2\left( \text{p}-\text{q} \right)
2a(qp)+d(q2P2)=2(Pq)\Rightarrow 2a\left( \text{q}-\text{p} \right)+\text{d}\left( {{\text{q}}^{2}}-{{\text{P}}^{2}} \right)=2\left( \text{P}-\text{q} \right)
Since we know that q2p2{{\text{q}}^{\text{2}}}-{{\text{p}}^{\text{2}}} can be written as (qP)\left( \text{q}-\text{P} \right) (q+P)\left( \text{q}+\text{P} \right)
We can rewrite the equation as
2a(qp)+d[(qp)(q+P)(qp)]=2(pq)2a\left( \text{q}-\text{p} \right)+\text{d}\left[ \left( \text{q}-\text{p} \right)\left( \text{q}+\text{P} \right)-\left( \text{q}-\text{p} \right) \right]=2\left( \text{p}-\text{q} \right)
(qp)\therefore \left( \text{q}-\text{p} \right) is common in every term in left hand side, we can take it out
(qp)2a+d(P+q1)=2(qP)\left( \text{q}-\text{p} \right)2\text{a}+\text{d}\left( \text{P}+\text{q}-\text{1} \right)=-2\left( \text{q}-\text{P} \right)
Cancelling out (qp)\left( \text{q}-\text{p} \right) on both side we get
2a+(p+q-1)d=-2-(3)
Now the sum of first (p+q)\left( \text{p}+\text{q} \right) terms can be written as
Sp+q=P+q2[2a+(P+q1)d]S\text{p}+\text{q}=\dfrac{\text{P}+\text{q}}{2}\left[ 2\text{a}+\left( \text{P}+\text{q}-1 \right)\text{d} \right]-(4)
Now substituting equation (3) in equation (4), we get
Sp+q=p+q2×2{{\text{S}}_{\text{p}+\text{q}}}=\dfrac{\text{p}+\text{q}}{2}\times -2
Sp+q=(p+q){{\text{S}}_{\text{p}+\text{q}}}=-\left( \text{p}+\text{q} \right)
Hence proved that the sum of first (p+q)\left( \text{p}+\text{q} \right) terms of an AP is equate to -(p+q)\left( \text{p}+\text{q} \right)

Note: Alternatively you can find the solution by computing the value of a and d individually and then substituting it into the summation equation It is a simple approach but the calculation is complex.