Question
Question: If the sum of first \(p,q,r\) term of an \(a,b,c\) respectively. Prove that \(\dfrac{a}{p}\left( {q ...
If the sum of first p,q,r term of an a,b,c respectively. Prove that pa(q−r)+qb(r−p)+rc(p−q)=0
Solution
We will write the sum of first p,q,r terms using the formula, 2n(2A+(n−1)D) where A is first term of the A.P. and D is the common difference. Then, substitute the values of pa, qb and rc in the left-hand-side of the given equation. Simplify it to make it equal to RHS.
Complete step-by-step answer:
We are given that sum of first p,q,r term of an a,b,c
We know that the sum of first n terms of a sequence is 2n(2A+(n−1)D), where A is first term of the A.P. and D is the common difference.
Let A be the first term of the A.P. and let D be the common difference of the A.P.
Hence,
$
a = \dfrac{p}{2}\left( {2A + \left( {p - 1} \right)D} \right) \\
\Rightarrow \dfrac{a}{p} = \dfrac{1}{2}\left( {2A + \left( {p - 1} \right)D} \right) \\
Similarly,sumoffirstqtermsisb
b = \dfrac{q}{2}\left( {2A + \left( {q - 1} \right)D} \right) \\
\Rightarrow \dfrac{b}{q} = \dfrac{1}{2}\left( {2A + \left( {q - 1} \right)D} \right) \\
Andsumoffirstrtermsisc
c = \dfrac{r}{2}\left( {2A + \left( {r - 1} \right)D} \right) \\
\Rightarrow \dfrac{c}{r} = \dfrac{1}{2}\left( {2A + \left( {r- 1} \right)D} \right) \\
Wehavetoprove\dfrac{a}{p}\left( {q - r} \right) + \dfrac{b}{q}\left( {r - p} \right) + \dfrac{c}{r}\left( {p - q} \right) = 0Wewillsubstitutethevaluesof\dfrac{a}{p},\dfrac{b}{q}and\dfrac{c}{r}intheaboveequation.\dfrac{1}{2}\left( {2A + \left( {p - 1} \right)D} \right)\left( {q - r} \right)+ \dfrac{1}{2}\left( {2A + \left( {q - 1} \right)D} \right)\left( {r - p} \right)+\dfrac{1}{2}\left( {2A + \left( {r- 1} \right)D} \right)\left( {p - q} \right) =0 WewillsimplifytheLHSandwillproveitequaltoRHS.
= \left( {2A + \left( {p - 1} \right)D} \right)\left( {q - r} \right) + \left( {2A + \left( {q - 1} \right)D} \right)\left( {r - p} \right) + \left( {2A + \left( {r - 1} \right)D} \right)\left( {p - q} \right) \\
= \left( {2A + pD - D} \right)\left( {q - r} \right) + \left( {2A + qD - D} \right)\left( {r - p} \right) + \left( {2A + rD - D} \right)\left( {p - q} \right) \\
= 2Aq + pqD - rD - 2rA - rpD + Dr + 2Ar + qrD + rD - 2Ap - pqD + Dp + 2Ap \\
- 2Aq + rDp - qrD - pD + qD \\
$
On adding and subtracting like terms, we will be left with 0, which is equal to RHS.
Hence, proved.
Note: In an A.P., the sequence is of type a,a+d,a+2d,a+3d,....... The nth term of the sequence is given as an=a+(n−1)d. And the sum of n terms of sequence is given by 2n(2a+(n−1)d) and 2n(a+an)