Solveeit Logo

Question

Question: If the sum of first \(p,q,r\) term of an \(a,b,c\) respectively. Prove that \(\dfrac{a}{p}\left( {q ...

If the sum of first p,q,rp,q,r term of an a,b,ca,b,c respectively. Prove that ap(qr)+bq(rp)+cr(pq)=0\dfrac{a}{p}\left( {q - r} \right) + \dfrac{b}{q}\left( {r - p} \right) + \dfrac{c}{r}\left( {p - q} \right) = 0

Explanation

Solution

We will write the sum of first p,q,rp,q,r terms using the formula, n2(2A+(n1)D)\dfrac{n}{2}\left( {2A + \left( {n - 1} \right)D} \right) where AA is first term of the A.P. and DD is the common difference. Then, substitute the values of ap\dfrac{a}{p}, bq\dfrac{b}{q} and cr\dfrac{c}{r} in the left-hand-side of the given equation. Simplify it to make it equal to RHS.

Complete step-by-step answer:
We are given that sum of first p,q,rp,q,r term of an a,b,ca,b,c
We know that the sum of first nn terms of a sequence is n2(2A+(n1)D)\dfrac{n}{2}\left( {2A + \left( {n - 1} \right)D} \right), where AA is first term of the A.P. and DD is the common difference.
Let AA be the first term of the A.P. and let DD be the common difference of the A.P.
Hence,
$
a = \dfrac{p}{2}\left( {2A + \left( {p - 1} \right)D} \right) \\
\Rightarrow \dfrac{a}{p} = \dfrac{1}{2}\left( {2A + \left( {p - 1} \right)D} \right) \\

Similarly,sumoffirst Similarly, sum of firstqtermsisterms is b
b = \dfrac{q}{2}\left( {2A + \left( {q - 1} \right)D} \right) \\
\Rightarrow \dfrac{b}{q} = \dfrac{1}{2}\left( {2A + \left( {q - 1} \right)D} \right) \\
Andsumoffirst And sum of firstrtermsisterms isc
c = \dfrac{r}{2}\left( {2A + \left( {r - 1} \right)D} \right) \\
\Rightarrow \dfrac{c}{r} = \dfrac{1}{2}\left( {2A + \left( {r- 1} \right)D} \right) \\
Wehavetoprove We have to prove\dfrac{a}{p}\left( {q - r} \right) + \dfrac{b}{q}\left( {r - p} \right) + \dfrac{c}{r}\left( {p - q} \right) = 0Wewillsubstitutethevaluesof We will substitute the values of\dfrac{a}{p},, \dfrac{b}{q}andand\dfrac{c}{r}intheaboveequation.in the above equation. \dfrac{1}{2}\left( {2A + \left( {p - 1} \right)D} \right)\left( {q - r} \right)+ \dfrac{1}{2}\left( {2A + \left( {q - 1} \right)D} \right)\left( {r - p} \right)+\dfrac{1}{2}\left( {2A + \left( {r- 1} \right)D} \right)\left( {p - q} \right) =0 WewillsimplifytheLHSandwillproveitequaltoRHS. We will simplify the LHS and will prove it equal to RHS.
= \left( {2A + \left( {p - 1} \right)D} \right)\left( {q - r} \right) + \left( {2A + \left( {q - 1} \right)D} \right)\left( {r - p} \right) + \left( {2A + \left( {r - 1} \right)D} \right)\left( {p - q} \right) \\
= \left( {2A + pD - D} \right)\left( {q - r} \right) + \left( {2A + qD - D} \right)\left( {r - p} \right) + \left( {2A + rD - D} \right)\left( {p - q} \right) \\
= 2Aq + pqD - rD - 2rA - rpD + Dr + 2Ar + qrD + rD - 2Ap - pqD + Dp + 2Ap \\
- 2Aq + rDp - qrD - pD + qD \\
$
On adding and subtracting like terms, we will be left with 0, which is equal to RHS.
Hence, proved.

Note: In an A.P., the sequence is of type a,a+d,a+2d,a+3d,......a,a + d,a + 2d,a + 3d,....... The nth{n^{th}} term of the sequence is given as an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d. And the sum of nn terms of sequence is given by n2(2a+(n1)d)\dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right) and n2(a+an)\dfrac{n}{2}\left( {a + {a_n}} \right)