Solveeit Logo

Question

Mathematics Question on Sum of First n Terms of an AP

If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289, find the sum of first n terms.

Answer

Given that, S7=49S_7 = 49 and S17=289S_{17} = 289
Sn=n2[2a+(n1)d]S_n = \frac n2 [2a + (n-1)d]

S7=72[2a+(71)d]S_7 = \frac 72 [2a + (7-1)d]

49=72(2a+6d)49 = \frac {7}{2} (2a + 6d)
7=(a+3d)7 = (a + 3d)
a+3d=7..(i)a + 3d = 7 ……..(i)
Similarly,
S17=172[2a+(171)d]S_{17 }= \frac {17}{2} [2a + (17-1)d]

289=172(2a+16d)289 = \frac {17}{2} (2a + 16d)
17=(a+8d)17 = (a + 8d)
a+8d=17.(ii)a + 8d = 17 …….(ii)
Subtracting equation (i)(i) from equation (ii)(ii),
5d=105d = 10
d=2d = 2
From equation (i),
a+3(2)=7a + 3(2) = 7
a+6=7a + 6 = 7
a=1a = 1
Sn=n2[2a+(n1)d]Sn = \frac n2 [2a + (n-1)d]

Sn=n2[2(1)+(n1)(2)]Sn= \frac n2 [2(1) + (n-1)(2)]

Sn=n2(2+2n2)S_n= \frac n2 (2 + 2n - 2)

Sn=n2(2n)S_n= \frac n2 (2n)

Sn=n2S_n= n^2