Solveeit Logo

Question

Question: If the sum of coefficients in expansion of \({{({{\alpha }^{2}}{{x}^{2}}+2\alpha x+1)}^{51}}\) is ze...

If the sum of coefficients in expansion of (α2x2+2αx+1)51{{({{\alpha }^{2}}{{x}^{2}}+2\alpha x+1)}^{51}} is zero, then α\alpha is
A. 1
B. -1
C. 0
D. None of these

Explanation

Solution

Hint: Use x=1x=1 and (x+a)n{{(x+a)}^{n}} . Then simplify it and keep it equal to 00. This will give the value of α\alpha as required in the question.

Complete step by step answer:
In question it is given that the sum of coefficients of expansion (α2x2+2αx+1)51{{({{\alpha }^{2}}{{x}^{2}}+2\alpha x+1)}^{51}} is 0.
So in sum of coefficients of any expansion to solve we put x=1x=1 ,
So we have an expansion (α2x2+2αx+1)51{{({{\alpha }^{2}}{{x}^{2}}+2\alpha x+1)}^{51}} ,
So putting x=1x=1 in above expansion we get the expansion as,
(α2x2+2αx+1)51=(α2(1)2+2α(1)+1)51 =(α2+2α+1)51 \begin{aligned} & {{({{\alpha }^{2}}{{x}^{2}}+2\alpha x+1)}^{51}}={{({{\alpha }^{2}}{{(1)}^{2}}+2\alpha (1)+1)}^{51}} \\\ & ={{({{\alpha }^{2}}+2\alpha +1)}^{51}} \\\ \end{aligned}
So we get final simplification as (α2+2α+1)51{{({{\alpha }^{2}}+2\alpha +1)}^{51}} ,
As we know the identity (a+b)2=a2+2ab+b2{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} ,
So we can write (α2+2α+1)=(α+1)2({{\alpha }^{2}}+2\alpha +1)={{(\alpha +1)}^{2}} ……….. (from above identity)
So (α2+2α+1)51{{({{\alpha }^{2}}+2\alpha +1)}^{51}} becomes,
(α2+2α+1)51=(α+1)102{{({{\alpha }^{2}}+2\alpha +1)}^{51}}={{(\alpha +1)}^{102}} ,
The sum of the coefficients of the terms in the expansion of a binomial raised to a power cannot be determined beforehand, taking a simple example below,
(x+1)2=x2+2x+1,Cx=4{{(x+1)}^{2}}={{x}^{2}}+2x+1,\sum{{{C}_{x}}=4}
This is because of the second term of the binomial which is a constant. This constant will also contribute to the coefficients of the terms.
According to the binomial theorem, the (r+1)th{{(r+1)}^{th}} term in the expansion of (x+a)n{{(x+a)}^{n}} is,
Tr+1=nCrxnrar{{T}_{r+1}}={}^{n}{{C}_{r}}{{x}^{n-r}}{{a}^{r}}
You can see the nCr{}^{n}{{C}_{r}} being used here which is the binomial coefficient. The sum of the binomial coefficients will be 2n{{2}^{n}} because, as we know that,
r=0n(nCr)=2n\sum\nolimits_{r=0}^{n}{\left( {}^{n}{{C}_{r}} \right)}={{2}^{n}}
The middle term depends upon the value of nn ,
If nn is even: then the total number of terms in the expansion of (a+b)n{{(a+b)}^{n}} is n+1n+1 (odd).
If nn is odd: then the total number of terms in the expansion of (a+b)n{{(a+b)}^{n}} is n+1n+1 (even).

If nn is positive integer,
(a+b)n==nC0an(b)0+nC1an1(b)1+nC2an2(b)2+nC3an3(b)3+...........+nCna0(b)n{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}
So replacing aa by 11 and bb by xxwe get,
(1+x)n==nC0(x)0+nC1(x)1+nC2(x)2+nC3(x)3+...........+nCn(x)n{{(1+x)}^{n}}=={}^{n}{{C}_{0}}{{\left( x \right)}^{0}}+{}^{n}{{C}_{1}}{{\left( x \right)}^{1}}+{}^{n}{{C}_{2}}{{\left( x \right)}^{2}}+{}^{n}{{C}_{3}}{{\left( x \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{\left( x \right)}^{n}}
So expanding (α+1)102{{(\alpha +1)}^{102}} using binomial theorem, we get,
So applying above theorem we get,
(α+1)102=102C0(α)0+102C1(α)1+102C2(α)2+102C3(α)3+...........+102C102(α)102{{(\alpha +1)}^{102}}={}^{102}{{C}_{0}}{{\left( \alpha \right)}^{0}}+{}^{102}{{C}_{1}}{{\left( \alpha \right)}^{1}}+{}^{102}{{C}_{2}}{{\left( \alpha \right)}^{2}}+{}^{102}{{C}_{3}}{{\left( \alpha \right)}^{3}}+...........+{}^{102}{{C}_{102}}{{\left( \alpha \right)}^{102}}
So simplifying in simple manner,
(α+1)102=102C0+102C1(α)1+102C2(α)2+102C3(α)3+...........+102C102(α)102{{(\alpha +1)}^{102}}={}^{102}{{C}_{0}}+{}^{102}{{C}_{1}}{{\left( \alpha \right)}^{1}}+{}^{102}{{C}_{2}}{{\left( \alpha \right)}^{2}}+{}^{102}{{C}_{3}}{{\left( \alpha \right)}^{3}}+...........+{}^{102}{{C}_{102}}{{\left( \alpha \right)}^{102}} …………. (1)
It is given in question that,
102C0+102C1(α)1+102C2(α)2+102C3(α)3+...........+102C102(α)102=0{}^{102}{{C}_{0}}+{}^{102}{{C}_{1}}{{\left( \alpha \right)}^{1}}+{}^{102}{{C}_{2}}{{\left( \alpha \right)}^{2}}+{}^{102}{{C}_{3}}{{\left( \alpha \right)}^{3}}+...........+{}^{102}{{C}_{102}}{{\left( \alpha \right)}^{102}}=0 …………… (2)
So from (1) and (2),
(α+1)102=102C0+102C1(α)1+102C2(α)2+102C3(α)3+...........+102C102(α)102=0{{(\alpha +1)}^{102}}={}^{102}{{C}_{0}}+{}^{102}{{C}_{1}}{{\left( \alpha \right)}^{1}}+{}^{102}{{C}_{2}}{{\left( \alpha \right)}^{2}}+{}^{102}{{C}_{3}}{{\left( \alpha \right)}^{3}}+...........+{}^{102}{{C}_{102}}{{\left( \alpha \right)}^{102}}=0
So we get,
(α+1)102=0{{(\alpha +1)}^{102}}=0
So simplifying in simple manner we get,
(α+1)=0(\alpha +1)=0
α=1\alpha =-1
Therefore we get the final value of α\alpha as 1-1.

The correct answer is option (B).

Note: Read the question properly. Be familiar with the formula (x+a)n{{(x+a)}^{n}} . Don’t confuse while simplifying and don’t jumble between nn and rr. Use the formula(1+x)n==nC0(x)0+nC1(x)1+nC2(x)2+nC3(x)3+...........+nCn(x)n{{(1+x)}^{n}}=={}^{n}{{C}_{0}}{{\left( x \right)}^{0}}+{}^{n}{{C}_{1}}{{\left( x \right)}^{1}}+{}^{n}{{C}_{2}}{{\left( x \right)}^{2}}+{}^{n}{{C}_{3}}{{\left( x \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{\left( x \right)}^{n}}. Expand (α+1)102{{(\alpha +1)}^{102}} in a proper manner.