Solveeit Logo

Question

Question: If the sum of all the solutions of the equation \(8\cos x\cdot \left( \cos \left( \dfrac{\pi }{6}+x ...

If the sum of all the solutions of the equation 8cosx(cos(π6+x)cos(π6x)12)=18\cos x\cdot \left( \cos \left( \dfrac{\pi }{6}+x \right)\cdot \cos \left( \dfrac{\pi }{6}-x \right)-\dfrac{1}{2} \right)=1 in [0,π]\left[ 0,\pi \right] is kπk\pi , then kk is equal to.
(a) 89\dfrac{8}{9}
(b) 209\dfrac{20}{9}
(c) 23\dfrac{2}{3}
(d) 139\dfrac{13}{9}

Explanation

Solution

Hint: For solving this question we will use some trigonometric formulae and then find the value of xx which will satisfy the given equation. After finding the solutions we will just add them and find the value of kk.

Complete step-by-step solution -
Given:
8cosx(cos(π6+x)cos(π6x)12)=18\cos x\cdot \left( \cos \left( \dfrac{\pi }{6}+x \right)\cdot \cos \left( \dfrac{\pi }{6}-x \right)-\dfrac{1}{2} \right)=1 and x[0,π]x\in \left[ 0,\pi \right]
It is given that xx can take values from 00 to π\pi including 00 & π\pi .
We will use the following formulae in solving this question:
cos(A+B)=cosAcosBsinAsinB..........(1) cos(AB)=cosAcosB+sinAsinB..........(2) cos(3θ)=4cos3θ3cosθ.............................(3) cosπ6=32.....................................................(4) sinπ6=12........................................................(5) (a+b)×(ab)=a2b2................................(6) cos2x+sin2x=1...........................................(7) \begin{aligned} & \cos \left( A+B \right)=\cos A\cdot \cos B-\sin A\cdot \sin B..........\left( 1 \right) \\\ & \cos \left( A-B \right)=\cos A\cdot \cos B+\sin A\cdot \sin B..........\left( 2 \right) \\\ & \cos \left( 3\theta \right)=4{{\cos }^{3}}\theta -3\cos \theta .............................\left( 3 \right) \\\ & \cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}.....................................................\left( 4 \right) \\\ & \sin \dfrac{\pi }{6}=\dfrac{1}{2}........................................................\left( 5 \right) \\\ & \left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}................................\left( 6 \right) \\\ & {{\cos }^{2}}x+{{\sin }^{2}}x=1...........................................\left( 7 \right) \\\ \end{aligned}

We have,
8cosx(cos(π6+x)cos(π6x)12)=18\cos x\cdot \left( \cos \left( \dfrac{\pi }{6}+x \right)\cdot \cos \left( \dfrac{\pi }{6}-x \right)-\dfrac{1}{2} \right)=1
Using (1) in the above equation,
8cosx((cosπ6cosxsinπ6sinx)×(cosπ6cosx+sinπ6sinx)12)=18\cos x\cdot \left( \left( \cos \dfrac{\pi }{6}\cdot \cos x-\sin \dfrac{\pi }{6}\cdot \sin x \right)\times \left( \cos \dfrac{\pi }{6}\cdot \cos x+\sin \dfrac{\pi }{6}\cdot \sin x \right)-\dfrac{1}{2} \right)=1
Now, using (4) and (5) in the above equation,

& 8\cos x\cdot \left( \left( \dfrac{\sqrt{3}}{2}\cdot \cos x-\dfrac{1}{2}\cdot \sin x \right)\times \left( \dfrac{\sqrt{3}}{2}\cdot \cos x+\dfrac{1}{2}\cdot \sin x \right)-\dfrac{1}{2} \right)=1 \\\ & \Rightarrow 8\cos x\cdot \left( \left( \dfrac{\sqrt{3}\cos x}{2}-\dfrac{\sin x}{2} \right)\times \left( \dfrac{\sqrt{3}\cos x}{2}+\dfrac{\sin x}{2} \right)-\dfrac{1}{2} \right)=1 \\\ \end{aligned}$$ Now, using (6) in the above equation, $$\begin{aligned} & 8\cos x\cdot \left( {{\left( \dfrac{\sqrt{3}\cos x}{2} \right)}^{2}}-{{\left( \dfrac{\sin x}{2} \right)}^{2}}-\dfrac{1}{2} \right)=1 \\\ & \Rightarrow 8\cos x\cdot \left( \dfrac{3{{\cos }^{2}}x}{4}-\dfrac{{{\sin }^{2}}x}{4}-\dfrac{1}{2} \right)=1 \\\ & \Rightarrow 8\cos x\cdot \left( \dfrac{3{{\cos }^{2}}x}{4}+\dfrac{{{\cos }^{2}}x}{4}-\dfrac{{{\cos }^{2}}x}{4}-\dfrac{{{\sin }^{2}}x}{4}-\dfrac{1}{2} \right)=1 \\\ & \Rightarrow 8\cos x\cdot \left( {{\cos }^{2}}x-\left( \dfrac{{{\cos }^{2}}x+{{\sin }^{2}}x}{4} \right)-\dfrac{1}{2} \right)=1 \\\ \end{aligned}$$ Now, using (7) in the above equation, $$\begin{aligned} & 8\cos x\cdot \left( {{\cos }^{2}}x-\dfrac{1}{4}-\dfrac{1}{2} \right)=1 \\\ & \Rightarrow 8\cos x\cdot \left( {{\cos }^{2}}x-\dfrac{3}{4} \right)=1 \\\ & \Rightarrow 2\left( 4\cos x\times {{\cos }^{2}}x-4\cos x\times \dfrac{3}{4} \right)=1 \\\ & \Rightarrow 2\left( 4{{\cos }^{3}}x-3\cos x \right)=1 \\\ \end{aligned}$$ Now, using (3) in the above equation, $\begin{aligned} & 2\times \cos \left( 3x \right)=1 \\\ & \Rightarrow \cos \left( 3x \right)=\dfrac{1}{2}...............\left( 8 \right) \\\ \end{aligned}$ Now, before we proceed we should know one important result which we will use here. If $\cos x=\cos y$ , then general solution for $x$ in terms of y can be written as, $x=2n\pi \pm y............\left( 9 \right)$ , where $n$ is any integer. Before we find $x$ , we should remember that $x$ can take values from $0$ to $\pi $ including $0$ & $\pi $ . From (8) we have: $\cos 3x=\dfrac{1}{2}$ We know that, $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ . Then, $\cos 3x=\cos \dfrac{\pi }{3}$ Now, using (9) in the above equation, $\begin{aligned} & \cos 3x=\cos \dfrac{\pi }{3} \\\ & \Rightarrow 3x=2n\pi \pm \dfrac{\pi }{3} \\\ & \Rightarrow x=\dfrac{2n\pi }{3}\pm \dfrac{\pi }{9} \\\ \end{aligned}$ First consider, $x=\dfrac{2n\pi }{3}+\dfrac{\pi }{9}$ , Put, $n=0$ . Then, $\begin{aligned} & x=0+\dfrac{\pi }{9} \\\ & \Rightarrow x=\dfrac{\pi }{9}...........\left( 10 \right) \\\ \end{aligned}$ Put, $n=1$ . Then, $\begin{aligned} & x=\dfrac{2\pi }{3}+\dfrac{\pi }{9} \\\ & \Rightarrow x=\dfrac{7\pi }{9}..........\left( 11 \right) \\\ \end{aligned}$ Put, $n=2$ . Then, $\begin{aligned} & x=\dfrac{4\pi }{3}+\dfrac{\pi }{9} \\\ & \Rightarrow x=\dfrac{13\pi }{9}\left( >\pi \right) \\\ \end{aligned}$ Now consider, $x=\dfrac{2n\pi }{3}-\dfrac{\pi }{9}$ Put, $n=1$ . Then, $\begin{aligned} & x=\dfrac{2\pi }{3}-\dfrac{\pi }{9} \\\ & \Rightarrow x=\dfrac{5\pi }{9}.............\left( 12 \right) \\\ \end{aligned}$ Put, $n=2$ . Then, $\begin{aligned} & x=\dfrac{4\pi }{3}-\dfrac{\pi }{9} \\\ & \Rightarrow x=\dfrac{11\pi }{9}\left( >\pi \right) \\\ \end{aligned}$ In above calculations we neglected the values which are greater than $\pi $ or lesser than 0. From (10), (11) and (12) we have: $\begin{aligned} & x=\dfrac{\pi }{9} \\\ & x=\dfrac{7\pi }{9} \\\ & x=\dfrac{5\pi }{9} \\\ \end{aligned}$ Then, sum of all the solutions $=\dfrac{\pi }{9}+\dfrac{7\pi }{9}+\dfrac{5\pi }{9}=\dfrac{13\pi }{9}=\dfrac{13}{9}\times \pi $ . It is given that, sum of all the solutions $=k\pi $ . Then, $k=\dfrac{13}{9}$ . Thus, (d) is the correct option. Note: Here, we should use each formula which is mentioned in the solution. And for finding the value of $x$ , we should remember that $x$ can take values from $0$ to $\pi $ including $0$ & $\pi $ . Then, calculate the value of $k$ and match the correct option.