Question
Question: If the sum of all the solutions of the equation \(8\cos x\cdot \left( \cos \left( \dfrac{\pi }{6}+x ...
If the sum of all the solutions of the equation 8cosx⋅(cos(6π+x)⋅cos(6π−x)−21)=1 in [0,π] is kπ , then k is equal to.
(a) 98
(b) 920
(c) 32
(d) 913
Solution
Hint: For solving this question we will use some trigonometric formulae and then find the value of x which will satisfy the given equation. After finding the solutions we will just add them and find the value of k.
Complete step-by-step solution -
Given:
8cosx⋅(cos(6π+x)⋅cos(6π−x)−21)=1 and x∈[0,π]
It is given that x can take values from 0 to π including 0 & π .
We will use the following formulae in solving this question:
cos(A+B)=cosA⋅cosB−sinA⋅sinB..........(1)cos(A−B)=cosA⋅cosB+sinA⋅sinB..........(2)cos(3θ)=4cos3θ−3cosθ.............................(3)cos6π=23.....................................................(4)sin6π=21........................................................(5)(a+b)×(a−b)=a2−b2................................(6)cos2x+sin2x=1...........................................(7)
We have,
8cosx⋅(cos(6π+x)⋅cos(6π−x)−21)=1
Using (1) in the above equation,
8cosx⋅((cos6π⋅cosx−sin6π⋅sinx)×(cos6π⋅cosx+sin6π⋅sinx)−21)=1
Now, using (4) and (5) in the above equation,