Solveeit Logo

Question

Mathematics Question on Quadratic Equations

If the sum of all the roots of the equation e2x11ex45ex+812=0e^{2x} - 11e^x - 45e^{-x} + \frac{81}{2} = 0
is logeP, then p is equal to _____.

Answer

The correct answer is 45
Let ex=te^x = t then equation reduces to
t211t45t+812=0t^2−11t−\frac{45}{t}+\frac{81}{2}=0
2t322t2\+81t45=0(i)⇒ 2t^3 – 22t^2 \+ 81t – 45 = 0 …(i)
if roots of
e2x11ex45ex+812=0e^{2x} - 11e^x - 45e^{-x} + \frac{81}{2} = 0
are α, β, γ then roots of (i) will be
eα1eα2eα3e^{α_1}e^{α_2}e^{α_3}
Therefore , by using product of roots
eα1+α2+α3=45e^{α_1+α_2+α_3}=45
α1\+α2\+α3⇒ α_1 \+ α_2 \+ α_3
= ln 45
⇒ p = 45