Solveeit Logo

Question

Question: If the sum of all the roots of the equation $e^{2x} - 11e^x - 45e^{-x} + 81/2 = 0$ is $log_e p$, the...

If the sum of all the roots of the equation e2x11ex45ex+81/2=0e^{2x} - 11e^x - 45e^{-x} + 81/2 = 0 is logeplog_e p, then p is equal to _.

A

45

B

81/2

C

11

D

9/2

Answer

45

Explanation

Solution

The given equation is e2x11ex45ex+81/2=0e^{2x} - 11e^x - 45e^{-x} + 81/2 = 0. Multiplying the equation by exe^x to eliminate the negative exponent, we get: ex(e2x)ex(11ex)ex(45ex)+ex(81/2)=0e^x(e^{2x}) - e^x(11e^x) - e^x(45e^{-x}) + e^x(81/2) = 0 e3x11e2x45+812ex=0e^{3x} - 11e^{2x} - 45 + \frac{81}{2}e^x = 0 Rearranging the terms, we have: e3x11e2x+812ex45=0e^{3x} - 11e^{2x} + \frac{81}{2}e^x - 45 = 0 Let t=ext = e^x. Substituting tt into the equation gives a cubic polynomial in tt: t311t2+812t45=0t^3 - 11t^2 + \frac{81}{2}t - 45 = 0 Let the roots of this cubic equation be t1,t2,t3t_1, t_2, t_3. If x1,x2,x3x_1, x_2, x_3 are the roots of the original exponential equation, then t1=ex1t_1 = e^{x_1}, t2=ex2t_2 = e^{x_2}, and t3=ex3t_3 = e^{x_3}. According to Vieta's formulas, for a cubic equation at3+bt2+ct+d=0at^3 + bt^2 + ct + d = 0, the product of the roots is t1t2t3=d/at_1 t_2 t_3 = -d/a. In our equation, a=1a=1, b=11b=-11, c=81/2c=81/2, and d=45d=-45. So, the product of the roots is t1t2t3=(45)/1=45t_1 t_2 t_3 = -(-45)/1 = 45. Substituting back ti=exit_i = e^{x_i}, we get: ex1ex2ex3=45e^{x_1} \cdot e^{x_2} \cdot e^{x_3} = 45 ex1+x2+x3=45e^{x_1+x_2+x_3} = 45 The problem states that the sum of all the roots of the given equation is logeplog_e p. So, x1+x2+x3=logepx_1+x_2+x_3 = log_e p. Taking the natural logarithm of both sides of ex1+x2+x3=45e^{x_1+x_2+x_3} = 45: loge(ex1+x2+x3)=loge45log_e(e^{x_1+x_2+x_3}) = log_e 45 x1+x2+x3=loge45x_1+x_2+x_3 = log_e 45 Comparing this with x1+x2+x3=logepx_1+x_2+x_3 = log_e p, we find that p=45p = 45.