Solveeit Logo

Question

Mathematics Question on introduction to three dimensional geometry

If the straight lines x12=y+1K=z2\frac{x-1}{2}=\frac{y+1}{K} = \frac{z}{2} and   20mmx+15=y+12=zk\space20mm \frac{x+1}{5}=\frac{y+1}{2} = \frac{z}{k} are coplanar, then the plane(s) containing these two lines is/are

A

y + 2z = - 1

B

y + z = - 1

C

y - 2 = - 1

D

y - 2z = - 1

Answer

y - 2 = - 1

Explanation

Solution

PLAN If the straight lines are coplanar. They the should lie in same plane.
Description of Situation If straight lines are coplanar.
  20mmx2x1y2y1z2z1 a1b1c1 a2b2c2 =0\Rightarrow \space20mm \begin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\\ a_1 & b_1 & c_1 \\\ a_2 & b_2 & c_2 \\\ \end{vmatrix}= 0 Since,
and   15mmx+15=y+12=zk\space15mm \frac{x+1}{5}=\frac{y+1}{2} = \frac{z}{k} are coplanar.
  5mm200 2K2 52K =0\Rightarrow \space5mm \begin{vmatrix} 2 & 0 & 0 \\\ 2 & K & 2 \\\ 5 & 2 & K \\\ \end{vmatrix}= 0
\Rightarrow   15mmK2=4K=±2\space15mm K^2 = 4 \Rightarrow K = \pm 2
\therefore   15mmn1=b1×d1=6j6k,for k=2\space15mm n_1 = b_1 \times d_1 = 6j - 6k, for\ k = 2
\therefore   15mmn2=b2×d2=14j+14k,for k=2\space15mm n_2 = b_2 \times d_2 = 14j + 14k, for\ k = -2
So, equation of planes are (ra).n1=0(r - a ).n_1 = 0
\Rightarrow   15mmyz=1\space15mm y - z = - 1 and (ra).n2=0(r - a ).n_2 = 0
\Rightarrow   15mmy+z=1\space15mm y + z = - 1