Solveeit Logo

Question

Mathematics Question on Ellipse

If the straight line y=4x+cy = 4x + c touches the ellipse x24+y2=1\frac{x^2}{4} + y^2 = 1 then c is equal to

A

0

B

±65\pm \sqrt{65}

C

±62\pm \sqrt{62}

D

±2\pm \sqrt{2}

Answer

±65\pm \sqrt{65}

Explanation

Solution

We have,
y=4x+c...(i)y=4 x+c\,\,\,...(i)
and x24+y2=1...(ii)\frac{x^{2}}{4}+y^{2}=1\,\,\,...(ii)
Put value of yy from Eqs. (i) into (ii), we get
x24+(4x+c)2=1\frac{x^{2}}{4}+(4 x+c)^{2}=1
x2+4(4x+c)2=4\Rightarrow x^{2}+4(4 x+c)^{2}=4
x2+4(16x2+8cx+c2)=4\Rightarrow x^{2}+4\left(16 x^{2}+8\, c x+c^{2}\right)=4
x2+64x2+32cx+4c2=4\Rightarrow x^{2}+64 x^{2}+32\, c x+4 c^{2}=4
65x2+32cx+4(c21)=0\Rightarrow 65 x^{2}+32\, c x+4\left(c^{2}-1\right)=0
Since, given line is a tangent to the ellipse.
\therefore Discriminant =0=0
(32c)24×65×4(c21)=0\Rightarrow (32 c)^{2}-4 \times 65 \times 4\left(c^{2}-1\right)=0
1024c21040(c21)=0\Rightarrow 1024\, c^{2}-1040\left(c^{2}-1\right)=0
1024c21040c2+1040=0\Rightarrow 1024 \,c^{2}-1040\, c^{2}+1040=0
16c2=1040\Rightarrow 16\, c^{2}=1040
c2=65\Rightarrow c^{2}=65
c=±65\Rightarrow c=\pm \sqrt{65}