Solveeit Logo

Question

Question: If the straight line \[x\cos \alpha + y\sin \alpha = p\] touches the ellipse \[\dfrac{{{x^2}}}{{{a^2...

If the straight line xcosα+ysinα=px\cos \alpha + y\sin \alpha = p touches the ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 , prove that p2=a2cos2α+b2sin2α{p^2} = {a^2}{\cos ^2}\alpha + {b^2}{\sin ^2}\alpha .

Explanation

Solution

Here, in the given question, a straight line touches the ellipse. And we are asked to prove a relation given on the basis of equations of line and ellipse. We will use the fact that at a point of intersection, the slope of the straight line and tangent to ellipse must be equal to each other and prove the given relation.

Complete step-by-step solution:
Given, Equation of straight line xcosα+ysinα=px\cos \alpha + y\sin \alpha = p, and,
Equation of the curve (ellipse) is x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1
Or we can write it as, b2x2+a2y2=a2b2{b^2}{x^2} + {a^2}{y^2} = {a^2}{b^2}
Let this straight line and ellipse intersect each other at point P(x1,y1)P\left( {{x_1},{y_1}} \right)

Therefore, P(x1,y1)P\left( {{x_1},{y_1}} \right) must satisfy the equation of line as well as ellipse.
x1cosα+y1sinα=p{x_1}\cos \alpha + {y_1}\sin \alpha = p
And b2x12+a2y12=a2b2{b^2}x_1^2 + {a^2}y_1^2 = {a^2}{b^2}
Now, slope of the straight line is cosαsinα - \dfrac{{\cos \alpha }}{{\sin \alpha }}
Slope of the tangent to the ellipse at point P(x1,y1)P\left( {{x_1},{y_1}} \right) is (dydx)(x1,y1){\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {{x_1},{y_1}} \right)}}.
Differentiating b2x2+a2y2=a2b2{b^2}{x^2} + {a^2}{y^2} = {a^2}{b^2}, w.r.t. xx, we get

2b2x+2a2ydydx=0 dydx=b2xa2y (dydx)(x1,y1)=b2x1a2y1  2{b^2}x + 2{a^2}y\dfrac{{dy}}{{dx}} = 0 \\\ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{{b^2}x}}{{{a^2}y}} \\\ \Rightarrow {\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {{x_1},{y_1}} \right)}} = - \dfrac{{{b^2}{x_1}}}{{{a^2}{y_1}}} \\\

According to the question, at point P(x1,y1)P\left( {{x_1},{y_1}} \right), The slope of the straight line and the tangent to the ellipse must be equal to each other.

b2x1a2y1=cosαsinα x1a2cosα=y1b2sinα=λ(say)  \therefore - \dfrac{{{b^2}{x_1}}}{{{a^2}{y_1}}} = - \dfrac{{\cos \alpha }}{{\sin \alpha }} \\\ \Rightarrow \dfrac{{{x_1}}}{{{a^2}\cos \alpha }} = \dfrac{{{y_1}}}{{{b^2}\sin \alpha }} = \lambda \left( {say} \right) \\\

x1=λa2  cosα\Rightarrow {x_1} = \lambda {a^2}\;\cos \alpha and y1=λb2sinα{y_1} = \lambda {b^2}\sin \alpha
Putting these values in the equation of line at P(x1,y1)P\left( {{x_1},{y_1}} \right) , we get

λa2  cos2α+λb2sin2α=p λ=pa2cos2α+b2sin2α  \lambda {a^2}\;{\cos ^2}\alpha + \lambda {b^2}{\sin ^2}\alpha = p \\\ \Rightarrow \lambda = \dfrac{p}{{{a^2}{{\cos }^2}\alpha + {b^2}{{\sin }^2}\alpha }} \\\

Therefore, the values for x1{x_1}and y1{y_1}are
x1=pa2  cos2αa2cos2α+b2sin2α{x_1} = \dfrac{{p{a^2}\;{{\cos }^2}\alpha }}{{{a^2}{{\cos }^2}\alpha + {b^2}{{\sin }^2}\alpha }} and y1=pb2  sin2αa2cos2α+b2sin2α{y_1} = \dfrac{{p{b^2}\;{{\sin }^2}\alpha }}{{{a^2}{{\cos }^2}\alpha + {b^2}{{\sin }^2}\alpha }}
Putting these values in the equation of the ellipse at point P(x1,y1)P\left( {{x_1},{y_1}} \right), we get

b2p2a4  cos2α(a2cos2α+b2sin2α)2+b4p2a2  sin2α(a2cos2α+b2sin2α)2=a2b2 b2p2a2(a2cos2α+b2sin2α)(a2cos2α+b2sin2α)2=a2b2 p2(a2cos2α+b2sin2α)=1 p2=a2cos2α+b2sin2α  \dfrac{{{b^2}{p^2}{a^4}\;{{\cos }^2}\alpha }}{{{{\left( {{a^2}{{\cos }^2}\alpha + {b^2}{{\sin }^2}\alpha } \right)}^2}}} + \dfrac{{{b^4}{p^2}{a^2}\;{{\sin }^2}\alpha }}{{{{\left( {{a^2}{{\cos }^2}\alpha + {b^2}{{\sin }^2}\alpha } \right)}^2}}} = {a^2}{b^2} \\\ \Rightarrow \dfrac{{{b^2}{p^2}{a^2}\left( {{a^2}{{\cos }^2}\alpha + {b^2}{{\sin }^2}\alpha } \right)}}{{{{\left( {{a^2}{{\cos }^2}\alpha + {b^2}{{\sin }^2}\alpha } \right)}^2}}} = {a^2}{b^2} \\\ \Rightarrow \dfrac{{{p^2}}}{{\left( {{a^2}{{\cos }^2}\alpha + {b^2}{{\sin }^2}\alpha } \right)}} = 1 \\\ \Rightarrow {p^2} = {a^2}{\cos ^2}\alpha + {b^2}{\sin ^2}\alpha \\\

Note: Whenever we face such types of questions, one thing to keep in mind is that at the point of intersection of two curves, their slopes must be equal to each other. So, firstly find out the equation of both the curves at general point P(x1,y1)P\left( {{x_1},{y_1}} \right). And Slope of the tangent to the ellipse at point P(x1,y1)P\left( {{x_1},{y_1}} \right) is (dydx)(x1,y1){\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {{x_1},{y_1}} \right)}}.