Question
Mathematics Question on Conic sections
If the straight line 3x+4y=k touches the circle x2+y2=16x, then the value of k is
A
16,64
B
-16,-64
C
-16,64
D
16,-64
Answer
-16,64
Explanation
Solution
Given, x2+y2=16x
⇒x2−16x+y2=0
⇒x2−2(x)8+(8)2−(8)2+y2=0
⇒(x−8)2+y2=64...(i)
∴ Centre = (8, 0) and radius = 8
Since, the straight line 3x+4y=k touches the circle x2+y2=16, therefore the length of perpendicular from the centre (8, 0) to the straight line 3x+4y−k=0 is equal to the radius of the circle.
i.e., 8=9+163(8)+4(0)−k
⇒8=2524−k
⇒8=5∣24−k∣
⇒∣24−k∣=40
⇒24−k=±40
Taking positive sign, we get
24−k=40
⇒−k=−40−24=16
⇒k=−16
Taking negative sign, we get
24−k=−40
⇒−k=−40−24=−64
⇒k=64
∴k=−16,64