Solveeit Logo

Question

Mathematics Question on Differential equations

If the standard deviations of the numbers - 1, 0, 1, K is 5\sqrt5, where k>0k>0, then k is equal to

A

453\frac{4 \sqrt{5}}{3}

B

2103\frac{2\sqrt{10}}{3}

C

6\sqrt6

D

262\sqrt6

Answer

262\sqrt6

Explanation

Solution

Standard deviation = 1n(xixˉ)2\sqrt{\frac{1}{n} \sum (x_i - \bar{x})^2}
We are given that the standard deviation of the numbers -1, 0, 1, and k is 5\sqrt5.
So we can set up the equation as follows:
5=14[(1xˉ)2+(0xˉ)2+(1xˉ)2+(kxˉ)2]\sqrt{5} = \sqrt{\frac{1}{4} \left[ (-1 - \bar{x})^2 + (0 - \bar{x})^2 + (1 - \bar{x})^2 + (k - \bar{x})^2 \right]}
Simplifying the equation:
5=14[(1+xˉ2)+(xˉ2)+(1+xˉ2)+(k22kxˉ+xˉ2)]5\sqrt{5} = \sqrt{\frac{1}{4} \left[ (1 + \bar{x}^2) + (\bar{x}^2) + (1 + \bar{x}^2) + (k^2 - 2k\bar{x} + \bar{x}^2) \right]} \sqrt{5}

= 14(3xˉ2+k22kxˉ+2)\sqrt{\frac{1}{4} \cdot (3\bar{x}^2 + k^2 - 2k\bar{x} + 2)}
Squaring both sides of the equation:
5=14(3xˉ2+k22kxˉ+2)205 = \frac{1}{4} \cdot (3\bar{x}^2 + k^2 - 2k\bar{x} + 2) 20

= 3xˉ2+k22kxˉ+23\bar{x}^2 + k^2 - 2k\bar{x} + 2
Rearranging the terms: 3xˉ22kxˉ+k2=183\bar{x}^2 - 2k\bar{x} + k^2 = 18
Now, we need to find the value of k that satisfies this equation.
Given that k>0k > 0, we can consider the discriminant of the quadratic equation:
Discriminant(D)=(2k)24(3)(k218)(D) = (-2k)^2 - 4(3)(k^2 - 18)

Simplifying:
D=4k24(3k254) DD = 4k^2 - 4(3k^2 - 54)\ D
= 4k212k2+216=D4k^2 - 12k^2 + 216 = D
= 8k2+216-8k^2 + 216
For the quadratic equation to have real solutions, the discriminant D must be greater than or equal to 8k2+2160-8k^2 + 216 \geq 0
Dividing both sides by -8 (and flipping the inequality sign):
k2270and(k27)(k+27)0k^2 - 27 \geq 0 \quad \text{and} \quad (k - \sqrt{27})(k + \sqrt{27}) \geq 0
Since k>0k > 0, we need to consider the range k>27k > \sqrt{27}
The only option that satisfies k>27k > \sqrt{27} is option (4) 262\sqrt{6}.
Therefore, k is equal to 26.2\sqrt{6}.