Solveeit Logo

Question

Question: If the standard deviation of a variable \[X\] is \[\sigma \], then the standard deviation of the var...

If the standard deviation of a variable XX is σ\sigma , then the standard deviation of the variable aX+bc\dfrac{{aX + b}}{c} is
(a) aσa\sigma
(b) acσ\dfrac{a}{c}\sigma
(c) acσ\left| {\dfrac{a}{c}} \right|\sigma
(d) aσ+bc\dfrac{{a\sigma + b}}{c}

Explanation

Solution

Here, we need to find the standard deviation of the variable aX+bc\dfrac{{aX + b}}{c}. Let Y=aX+bcY = \dfrac{{aX + b}}{c}. First, we will find the variance of the variable XX. Then, we will find the mean of the variable YY. Using the mean of YY, we will find the variance of YY. Then, using the variance of XX, we will simplify the expression for variance of YY. Finally, we will use the variance of YY to find the standard deviation of YY, and hence, the standard deviation of the variable aX+bc\dfrac{{aX + b}}{c}.
Formula Used: The mean of a variable of a variable XX is given by the formula 1ni=1nxi\dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} .
The variance of a variable of a variable XX is given by the formula 1ni=1n(xiX)2\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} .
The standard deviation of a variable is equal to the square root of the variance of the variable.

Complete step by step solution:
The mean of a variable XX is given by the formula 1ni=1nxi\dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} .
Therefore, we get
X=1ni=1nxi\overline X = \dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}}
The standard deviation of a variable is equal to the square root of the variance of the variable.
The standard deviation of a variable XX is σ\sigma .
The variance of a variable of a variable XX is given by the formula 1ni=1n(xiX)2\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} .
Therefore, we get
σ2=1ni=1n(xiX)2\Rightarrow {\sigma ^2} = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}}
Now, let Y=aX+bcY = \dfrac{{aX + b}}{c}.
Therefore, we get yi=axi+bc{y_i} = \dfrac{{a{x_i} + b}}{c}.
We know that if all the terms of a series are increased, decreased, multiplied, or divided by the same number, the mean is also increased, divided, multiplied, or divided by the same number.
This means that if z=px+qz = px + q, then z=px+q\overline z = p\overline x + q.
Therefore, we get
Y=aX+bc\Rightarrow \overline Y = \dfrac{{a\overline X + b}}{c}
Now, we will find the variance of the variable YY.
Using the formula for variance of a variable, we get
Var(Y)=1ni=1n(yiY)2Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{y_i} - \overline Y } \right)}^2}}
Substituting yi=axi+bc{y_i} = \dfrac{{a{x_i} + b}}{c} and Y=aX+bc\overline Y = \dfrac{{a\overline X + b}}{c} in the expression, we get
Var(Y)=1ni=1n(axi+bcaX+bc)2\Rightarrow Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a{x_i} + b}}{c} - \dfrac{{a\overline X + b}}{c}} \right)}^2}}
Splitting the L.C.M., we get
Var(Y)=1ni=1n(axic+bcaXcbc)2\Rightarrow Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a{x_i}}}{c} + \dfrac{b}{c} - \dfrac{{a\overline X }}{c} - \dfrac{b}{c}} \right)}^2}}
Subtracting the like terms, we get
Var(Y)=1ni=1n(axicaXc)2\Rightarrow Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a{x_i}}}{c} - \dfrac{{a\overline X }}{c}} \right)}^2}}
Factoring the terms, we get
Var(Y)=1ni=1n(a(xiX)c)2\Rightarrow Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a\left( {{x_i} - \overline X } \right)}}{c}} \right)}^2}}
Simplifying the expression, we get
Var(Y)=1n×(ac)2×i=1n(xiX)2\Rightarrow Var\left( Y \right) = \dfrac{1}{n} \times {\left( {\dfrac{a}{c}} \right)^2} \times \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}}
Applying the exponent on the base and rewriting, we get
Var(Y)=a2c21ni=1n(xiX)2\Rightarrow Var\left( Y \right) = \dfrac{{{a^2}}}{{{c^2}}}\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}}
Substituting σ2=1ni=1n(xiX)2{\sigma ^2} = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} in the expression, we get
Var(Y)=a2c2σ2\Rightarrow Var\left( Y \right) = \dfrac{{{a^2}}}{{{c^2}}}{\sigma ^2}
The standard deviation of YY is the square root of Var(Y)Var\left( Y \right).
Therefore, taking the square root of both sides, we get
S.D.(Y)=a2c2σ2\Rightarrow S.D.\left( Y \right) = \sqrt {\dfrac{{{a^2}}}{{{c^2}}}{\sigma ^2}}
Simplifying the expression, we get
S.D.(Y)=acσ\Rightarrow S.D.\left( Y \right) = \left| {\dfrac{a}{c}} \right|\sigma
Substituting Y=aX+bcY = \dfrac{{aX + b}}{c} in the equation, we get
S.D.(aX+bc)=acσ\Rightarrow S.D.\left( {\dfrac{{aX + b}}{c}} \right) = \left| {\dfrac{a}{c}} \right|\sigma
Therefore, we get the standard deviation of the variable aX+bc\dfrac{{aX + b}}{c} as acσ\left| {\dfrac{a}{c}} \right|\sigma .

Thus, the correct option is option (c).

Note:
We simplified Var(Y)=1ni=1n(a(xiX)c)2Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a\left( {{x_i} - \overline X } \right)}}{c}} \right)}^2}} to Var(Y)=1n×(ac)2×i=1n(xiX)2Var\left( Y \right) = \dfrac{1}{n} \times {\left( {\dfrac{a}{c}} \right)^2} \times \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} .
If all the terms of a series are multiplied, or divided by the same number, then the variance of the series is multiplied, or divided by the square of the same number.
This means that if z=pxz = px, then Var(z)=p2Var(x)Var\left( z \right) = {p^2}Var\left( x \right).