Solveeit Logo

Question

Question: If the square root of \[\left( {\dfrac{{{x^2}}}{{{y^2}}} + \dfrac{{{y^2}}}{{{x^2}}} + \dfrac{1}{{2i}...

If the square root of (x2y2+y2x2+12i(xy+yx)+3116)\left( {\dfrac{{{x^2}}}{{{y^2}}} + \dfrac{{{y^2}}}{{{x^2}}} + \dfrac{1}{{2i}}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right) + \dfrac{{31}}{{16}}} \right) is ±(xy+yxim) \pm \left( {\dfrac{x}{y} + \dfrac{y}{x} - \dfrac{i}{m}} \right), then the value of m is
a. 2
b. 3
c. 4
d. 5

Explanation

Solution

Hint : Here the question is related to the square root concept. The term which is present in the square root id in the form of algebraic expression. So by using the concepts of squares and square root first we simplify. For the further simplification we use arithmetic operations and hence we determine the value of m.

Complete step-by-step answer :
The square and square root are inverse to each other. The square of a term is written as a number which has power 2. The square root is denoted as \sqrt {} .
Now consider the given question and it is written as
(x2y2+y2x2+12i(xy+yx)+3116)=±(xy+yxim)\Rightarrow \sqrt {\left( {\dfrac{{{x^2}}}{{{y^2}}} + \dfrac{{{y^2}}}{{{x^2}}} + \dfrac{1}{{2i}}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right) + \dfrac{{31}}{{16}}} \right)} = \pm \left( {\dfrac{x}{y} + \dfrac{y}{x} - \dfrac{i}{m}} \right)
On applying the square on both sides, we have
((x2y2+y2x2+12i(xy+yx)+3116))2=(±(xy+yxim))2\Rightarrow {\left( {\sqrt {\left( {\dfrac{{{x^2}}}{{{y^2}}} + \dfrac{{{y^2}}}{{{x^2}}} + \dfrac{1}{{2i}}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right) + \dfrac{{31}}{{16}}} \right)} } \right)^2} = {\left( { \pm \left( {\dfrac{x}{y} + \dfrac{y}{x} - \dfrac{i}{m}} \right)} \right)^2}
Since the square and square root are inverse to each other it will get cancels and then we have
(x2y2+y2x2+12i(xy+yx)+3116)=(xy+yxim)2\Rightarrow \left( {\dfrac{{{x^2}}}{{{y^2}}} + \dfrac{{{y^2}}}{{{x^2}}} + \dfrac{1}{{2i}}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right) + \dfrac{{31}}{{16}}} \right) = {\left( {\dfrac{x}{y} + \dfrac{y}{x} - \dfrac{i}{m}} \right)^2}
We simplify the RHS by using the formula (a+bc)2=a2+b2+c2+2ab2bc2ac{(a + b - c)^2} = {a^2} + {b^2} + {c^2} + 2ab - 2bc - 2ac, so now we have
(x2y2+y2x2+12i(xy+yx)+3116)=x2y2+y2x2+i2m2+2.xy.yx2yx.im2.xy.im\Rightarrow \left( {\dfrac{{{x^2}}}{{{y^2}}} + \dfrac{{{y^2}}}{{{x^2}}} + \dfrac{1}{{2i}}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right) + \dfrac{{31}}{{16}}} \right) = \dfrac{{{x^2}}}{{{y^2}}} + \dfrac{{{y^2}}}{{{x^2}}} + \dfrac{{{i^2}}}{{{m^2}}} + 2.\dfrac{x}{y}.\dfrac{y}{x} - 2\dfrac{y}{x}.\dfrac{i}{m} - 2.\dfrac{x}{y}.\dfrac{i}{m}
On further simplifying we have
x2y2+y2x2+12i(xy+yx)+3116=x2y2+y2x2+i2m2+22yx.im2.xy.im\Rightarrow \dfrac{{{x^2}}}{{{y^2}}} + \dfrac{{{y^2}}}{{{x^2}}} + \dfrac{1}{{2i}}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right) + \dfrac{{31}}{{16}} = \dfrac{{{x^2}}}{{{y^2}}} + \dfrac{{{y^2}}}{{{x^2}}} + \dfrac{{{i^2}}}{{{m^2}}} + 2 - 2\dfrac{y}{x}.\dfrac{i}{m} - 2.\dfrac{x}{y}.\dfrac{i}{m}
As we know that i2=1{i^2} = - 1, on substituting this value and on multiplying the some terms in above inequality we have
x2y2+y2x2+12i(xy+yx)+3116=x2y2+y2x21m2+22iyxm2ixym\Rightarrow \dfrac{{{x^2}}}{{{y^2}}} + \dfrac{{{y^2}}}{{{x^2}}} + \dfrac{1}{{2i}}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right) + \dfrac{{31}}{{16}} = \dfrac{{{x^2}}}{{{y^2}}} + \dfrac{{{y^2}}}{{{x^2}}} - \dfrac{1}{{{m^2}}} + 2 - 2\dfrac{{iy}}{{xm}} - 2\dfrac{{ix}}{{ym}}
Cancelling the terms which are present in both LHS and RHS so we have
12i(xy+yx)+3116=1m2+22iyxm2ixym\Rightarrow \dfrac{1}{{2i}}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right) + \dfrac{{31}}{{16}} = - \dfrac{1}{{{m^2}}} + 2 - 2\dfrac{{iy}}{{xm}} - 2\dfrac{{ix}}{{ym}}
For the last two terms we can multiply and divide by ii so we have
12i(xy+yx)+3116=1m2+22i2yixm2i2xiym\Rightarrow \dfrac{1}{{2i}}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right) + \dfrac{{31}}{{16}} = - \dfrac{1}{{{m^2}}} + 2 - 2\dfrac{{{i^2}y}}{{ixm}} - 2\dfrac{{{i^2}x}}{{iym}}
As we know that i2=1{i^2} = - 1, on substituting this value in above inequality we have
12i(xy+yx)+3116=1m2+2+2yixm+2xiym\Rightarrow \dfrac{1}{{2i}}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right) + \dfrac{{31}}{{16}} = - \dfrac{1}{{{m^2}}} + 2 + 2\dfrac{y}{{ixm}} + 2\dfrac{x}{{iym}}
Taking the common terms in the last two terms and we have
12i(xy+yx)+3116=1m2+2+2im(xy+yx)\Rightarrow \dfrac{1}{{2i}}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right) + \dfrac{{31}}{{16}} = - \dfrac{1}{{{m^2}}} + 2 + \dfrac{2}{{im}}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right)
On comparing the terms we have
12i(xy+yx)=2im(xy+yx)\Rightarrow \dfrac{1}{{2i}}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right) = \dfrac{2}{{im}}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right) and 3116=21m2\dfrac{{31}}{{16}} = 2 - \dfrac{1}{{{m^2}}}
On simplifying we have
12=2m\Rightarrow \dfrac{1}{2} = \dfrac{2}{m} and 1m2=23116\dfrac{1}{{{m^2}}} = 2 - \dfrac{{31}}{{16}}
On further simplification we have
12=2m\Rightarrow \dfrac{1}{2} = \dfrac{2}{m} and 1m2=116\dfrac{1}{{{m^2}}} = \dfrac{1}{{16}}
On further simplifying the value of m will be 4.
Hence option c is the correct one.
So, the correct answer is “Option C”.

Note : Sometimes to solve the problem we have to compare the terms what and which and all terms will be equated. Because of simplifying we may not get the answer in an easier way. we can substitute the value of m and we can verify the problem.