Solveeit Logo

Question

Physics Question on Dimensional Analysis

If the speed of light [c], acceleration due to gravity [g] and pressure [P] are taken as the fundamental quantities, then the dimension of gravitational constant is

A

c2g0p2{{c}^{2}}{{g}^{0}}{{p}^{-2}}

B

c0g2p1{{c}^{0}}{{g}^{2}}{{p}^{-1}}

C

cg3p2c{{g}^{3}}{{p}^{-2}}

D

cg0p1c{{g}^{0}}{{p}^{-1}}

Answer

c0g2p1{{c}^{0}}{{g}^{2}}{{p}^{-1}}

Explanation

Solution

: [c]=[LT1][c]=[L{{T}^{-1}}] [g]=[LT2][g]=[L{{T}^{-2}}] [P]=[ML1T2][P]=[M{{L}^{-1}}{{T}^{-2}}] cg=LT1LT1=T\frac{c}{g}=\frac{L{{T}^{-1}}}{L{{T}^{-1}}}=T \therefore T=cgT=\frac{c}{g} ?..(i) Again c2g=L2T2LT2=L\frac{{{c}^{2}}}{g}=\frac{{{L}^{2}}{{T}^{-2}}}{L{{T}^{-2}}}=L \therefore L=c2gL=\frac{{{c}^{2}}}{g} ?.(ii) P=ML1T2P=M[c2g]1[cg]2P=M{{L}^{-1}}{{T}^{-2}}\to P=M{{\left[ \frac{{{c}^{2}}}{g} \right]}^{-1}}{{\left[ \frac{c}{g} \right]}^{-2}} P[c2g][cg]2=MP\left[ \frac{{{c}^{2}}}{g} \right]{{\left[ \frac{c}{g} \right]}^{-2}}=M Or M=Pc4g3M=\frac{P{{c}^{4}}}{{{g}^{3}}} ?..(iii) Now G=M1L3T2G={{M}^{-1}}{{L}^{3}}{{T}^{-2}} \therefore [G]=[Pc4g3]1[c2g]3[cg]2[G]={{\left[ \frac{P{{c}^{4}}}{{{g}^{3}}} \right]}^{-1}}{{\left[ \frac{{{c}^{2}}}{g} \right]}^{3}}{{\left[ \frac{c}{g} \right]}^{-2}} [G]=P1c0g2[G]={{P}^{-1}}{{c}^{0}}{{g}^{2}} [G]=c0g2P1[G]={{c}^{0}}{{g}^{2}}{{P}^{-1}}