Question
Mathematics Question on Differential equations
If the solution of the differential equation
dxdy +ex(x2−2)y=(x2−2x)(x2−2)e2x
satisfies y(0) = 0, then the value of y(2) is ______.
A
-1
B
1
C
0
D
e
Answer
0
Explanation
Solution
The correct answer is (C) : 0
dxdy+ex(x2−2)y=(x2−2x)(x2−2)e2x
Here, I.F.
= e∫ex(x2−2)dx
= e(x2−2x)ex
∴ Solution of the differential equation is
y.e(x2−2x)ex=∫(x2−2x)(x2−2)e2x.e(x2−2x)exdx
=∫(x2−2x)ex.(x2−2)ex.e(x2−2x)exdx
Let
(x2−2x)ex=t
∴(x2−2)exdx=dt
y.e(x2−2x)ex=∫t.etdt
y.e(x2−2x)ex=(x2−2x−1)e(x2−2x)ex+c
∴y(0)=0
∴c=1
∴y=(x2−2x−1)+e(2x−x2)ex
∴y(2)=−1+1=0