Solveeit Logo

Question

Mathematics Question on Differential equations

If the solution of the differential equation
dydx\frac{dy}{dx} +ex(x22)y=(x22x)(x22)e2x+ e^x(x² - 2)y = (x^2 - 2x)(x^2 - 2)e^{2x}
satisfies y(0) = 0, then the value of y(2) is ______.

A

-1

B

1

C

0

D

ee

Answer

0

Explanation

Solution

The correct answer is (C) : 0
dydx+ex(x22)y=(x22x)(x22)e2x\frac{dy}{dx} + e^x(x^2-2)y=(x^2-2x)(x^2-2)e^{2x }
Here, I.F.
== eex(x22)dxe^{\int{e^x(x² - 2)dx}}
== e(x22x)exe^{(x² - 2x)e^x}
∴ Solution of the differential equation is
y.e(x22x)ex=(x22x)(x22)e2x.e(x22x)exdxy.e^{(x² - 2x)e^x} = \int{(x² - 2x)(x² - 2)e^{2x}.e^{(x² - 2x)e^x }dx}
=(x22x)ex.(x22)ex.e(x22x)exdx= \int{ (x² - 2x)e^x.(x² - 2)e^x.e(x² - 2x)e^x dx}
Let
(x22x)ex=t(x² - 2x)e^x = t
(x22)exdx=dt∴ (x² - 2)e^x dx = dt
y.e(x22x)ex=t.etdty.e(x² - 2x)e^x = ∫ t.e^tdt
y.e(x22x)ex=(x22x1)e(x22x)ex+cy.e(x² - 2x)e^x = (x² - 2x - 1)e^{(x² - 2x)e^x} + c
y(0)=0∴ y(0) = 0
c=1∴ c = 1
y=(x22x1)+e(2xx2)ex∴ y = (x² - 2x - 1) + e(2x - x²)e^x
y(2)=1+1=0∴ y(2) = -1 + 1 = 0