Solveeit Logo

Question

Mathematics Question on Differential equations

If the solution curve y=y(x)y = y(x) of the differential equationy2dx+(x2xy+y2)dy=0 y^2dx + (x^2 – xy + y^2)dy = 0, which passes through the point (1,1)(1,1) and intersects the line y=3xy=\sqrt 3x at the point (α,3α)(α,\sqrt 3α), then value of loge(3α)log_e(\sqrt 3α) is equal to :

A

π3\frac {\pi}{3}

B

π2\frac {\pi}{2}

C

π12\frac {\pi}{12}

D

π6\frac {\pi}{6}

Answer

π12\frac {\pi}{12}

Explanation

Solution

dydx=y2xyx2y2\frac {dy}{dx}=\frac {y^2}{xy−x^2−y^2}
Put y=vxy = vx we get
v+xdvdx=v2v1v2v+x\frac {dv}{dx}=\frac {v^2}{v−1−v^2}

xdvdx=v2v2+v+v3v1v2⇒ x\frac {dv}{dx}=\frac {v^2−v^2+v+v^3}{v−1−v^2}

v1v2v(1+v2)dv=dxx⇒∫\frac {v−1−v^2}{v(1+v^2)}dv=∫\frac {dx}{x}

tan1(yx)ln(yx)=ln x+ctan^{−1}⁡(\frac yx)−ln(\frac yx)=ln\ x+c
As it passes through (1,1)(1, 1)
c=π4c=\frac {\pi}{4}
tan1(yx)ln(yx)=ln x+π4⇒ tan^{−1⁡}(\frac yx)−ln(\frac yx)=ln\ x+\frac {\pi}{4}
Put y=3xy=\sqrt 3x we get.
π3ln3=ln x+π4⇒ \frac {\pi}{3}−ln\sqrt 3=ln\ x+\frac {\pi}{4}
ln x=π12ln3=lnα⇒ ln\ x=\frac {\pi}{12}−ln\sqrt 3=ln α
ln(3α)=ln3+lnα∴ln(\sqrt 3α)=ln\sqrt 3+ln α
=ln3+π12ln3=ln\sqrt 3+\frac {π}{12}−ln\sqrt 3
=π12=\frac {\pi}{12}

So, the correct option is (C): π12\frac {\pi}{12}