Solveeit Logo

Question

Mathematics Question on Differential equations

If the solution curve y=yxy = y \, x of the differential equation (1+y2)(1+logex)dx+xdy=0,x>0(1 + y^2) \left(1 + \log_e x\right) dx + x \, dy = 0, \quad x > 0 passes through the point (1,1)(1, 1) andy(e)=αtan(32)β+tan(32),y(e) = \frac{\alpha - \tan\left(\frac{3}{2}\right)}{\beta + \tan\left(\frac{3}{2}\right)},then α+2β\alpha + 2\beta is

Answer

Step 1: Separate Variables in the Differential Equation

(1x+lnxx)dx+dy1+y2=0\int \left( \frac{1}{x} + \frac{\ln x}{x} \right) dx + \int \frac{dy}{1 + y^2} = 0

Step 2: Integrate Both Sides

Integrating, we get:

lnx+(lnx)22+tan1y=C\ln x + \frac{(\ln x)^2}{2} + \tan^{-1} y = C

Step 3: Apply Initial Condition (x,y)=(1,1)(x, y) = (1, 1)

Substitute x=1x = 1 and y=1y = 1 to find CC:

ln1+(ln1)22+tan1(1)=CC=π4\ln 1 + \frac{(\ln 1)^2}{2} + \tan^{-1}(1) = C \Rightarrow C = \frac{\pi}{4}

Step 4: Rewrite the Solution with C=π4C = \frac{\pi}{4}

lnx+(lnx)22+tan1y=π4\ln x + \frac{(\ln x)^2}{2} + \tan^{-1} y = \frac{\pi}{4}

Step 5: Evaluate y(e)y(e)

Substitute x=ex = e into the equation:

lne+(lne)22+tan1y=π4\ln e + \frac{(\ln e)^2}{2} + \tan^{-1} y = \frac{\pi}{4}

1+12+tan1y=π41 + \frac{1}{2} + \tan^{-1} y = \frac{\pi}{4}

Solving for yy, we get:

y=tan(π432)=1tan321+tan32y = \tan \left( \frac{\pi}{4} - \frac{3}{2} \right) = \frac{1 - \tan \frac{3}{2}}{1 + \tan \frac{3}{2}}

Step 6: Identify α\alpha and β\beta

Comparing with the given expression for y(e)y(e), we find α=1\alpha = 1 and β=1\beta = 1.

Step 7: Calculate α+2β\alpha + 2\beta

α+2β=1+21=3\alpha + 2\beta = 1 + 2 \cdot 1 = 3

So, the correct answer is: 3