Question
Mathematics Question on Area under Simple Curves
If the solution curve of the differential equation dxdy=x−yx+y−2 passes through the points (2,1) and (k + 1, 2), k > 0, then
A
2tan−1(k1)=loge(k2+1)
B
tan−1(k1)=loge(k2+1)
C
2tan−1(k+11)=loge(k2+2k+2)
D
2tan−1(k1)=loge(k2+k21)
Answer
2tan−1(k1)=loge(k2+1)
Explanation
Solution
dxdy=x−1−y+1x−1+y−1
Let x–1=X,y–1=Y
dXdY=X−YX+Y
LetY=tX
dXdY=t+XdXdt
t+XdXdt=1+1−tt
XdXdt=1+1−tt−t=1+1−tt2
∫1+t21−tdt=∫XdX
tan−1(t−1)−21ln(1+t2)=ln∣X∣+C
tan−1(x−1y−1)−21ln(1+(x−1y−1)2)=ln∣x−1∣+C
Curve passes through (2,1)
0–0=0+c⇒c=0
If (k\+1,2) also satisfies the curve
tan−1(k1)−21ln(k21+k2)=lnk
2tan−1(k1)=ln(1+k2)
So, the correct option is (A): 2tan−1(k1)=ln(k2+1)