Solveeit Logo

Question

Mathematics Question on Area under Simple Curves

If the solution curve of the differential equation dydx=x+y2xy\frac{dy}{dx} = \frac{x + y - 2}{x - y} passes through the points (2,1)(2, 1) and (k + 1, 2), k > 0, then

A

2tan1(1k)=loge(k2+1)2\tan^{-1}\left(\frac{1}{k}\right) = \log_e(k^2 + 1)

B

tan1(1k)=loge(k2+1)\tan^{-1}\left(\frac{1}{k}\right) = \log_e(k^2 + 1)

C

2tan1(1k+1)=loge(k2+2k+2)2\tan^{-1}\left(\frac{1}{k+1}\right) = \log_e(k^2 + 2k + 2)

D

2tan1(1k)=loge(k2+1k2)2\tan^{-1}\left(\frac{1}{k}\right) = \log_e\left(k^2 + \frac{1}{k^2}\right)

Answer

2tan1(1k)=loge(k2+1)2\tan^{-1}\left(\frac{1}{k}\right) = \log_e(k^2 + 1)

Explanation

Solution

dydx=x1+y1x1y+1\frac{dy}{dx} = \frac{x-1 + y-1}{x-1 - y+1}
Let x1=X,y1=Yx – 1 = X, y – 1 = Y

dYdX=X+YXY\frac{dY}{dX}=\frac{X+Y}{X−Y}

LetY=tXLet Y=tX

dYdX=t+XdtdX\frac{dY}{dX} = t + X\frac{dt}{dX}

t+XdtdX=1+t1tt + X\frac{dt}{dX} = 1 + \frac{t}{1 - t}

XdtdX=1+t1tt=1+t21tX\frac{dt}{dX} = 1 + \frac{t}{1 - t} - t = 1 + \frac{t^2}{1 - t}

1t1+t2dt=dXX\int \frac{1 - t}{1 + t^2} \, dt = \int \frac{dX}{X}

tan1(t1)12ln(1+t2)=lnX+C\tan^{-1}(t - 1) - \frac{1}{2}\ln(1 + t^2) = \ln|X| + C

tan1(y1x1)12ln(1+(y1x1)2)=lnx1+C\tan^{-1}\left(\frac{y-1}{x-1}\right) - \frac{1}{2}\ln\left(1+\left(\frac{y-1}{x-1}\right)^2\right) = \ln|x-1| + C
Curve passes through (2,1)(2, 1)
00=0+cc=00–0=0+c⇒c=0
If (k\+1,2)(k \+ 1, 2) also satisfies the curve
tan1(1k)12ln(1+k2k2)=lnk\tan^{-1}\left(\frac{1}{k}\right) - \frac{1}{2}\ln\left(\frac{1 + k^2}{k^2}\right) = \ln k
2tan1(1k)=ln(1+k2)2\tan^{-1}\left(\frac{1}{k}\right) = \ln(1+k^2)
So, the correct option is (A): 2tan1(1k)=ln(k2+1)2\tan^{-1}\left(\frac{1}{k}\right) = \ln(k^2 + 1)