Question
Mathematics Question on Differential equations
If the solution curve of the differential equation ((tan−1y)−x)dy=(1+y2)dx passes through the point (1,0), then the abscissa of the point on the curve whose ordinate is tan(1), is
A
2e
B
e2
C
e
D
e1
Answer
e2
Explanation
Solution
((tan−1y)−x)dy=(1+y2)dx
dydx+1+y2x=1+y2tan−1y
I.F.=e∫1+y21dy=etan−1y
∴ Solution
x.etan−1y∫1+y2etan−1ytan−1ydy
Let
etan−1y=t
1+y2etan−1y=dt
=xetan−1y∫lntdt=tlnt–t+c
=xetan−1y=etan−1ytan−1y−etan−1y+c…(i)
∵ It passes through (1,0)⇒c=2
Now put y=tan1, then
ex=e–e\+2
⇒x=e2