Solveeit Logo

Question

Mathematics Question on Differential equations

If the solution curve of the differential equation ((tan1y)x)dy=(1+y2)dx((tan−1y)−x)dy=(1+y^2)dx passes through the point (1,0)(1, 0), then the abscissa of the point on the curve whose ordinate is tan(1)tan(1), is

A

2e2e

B

2e\frac{2}{e}

C

ee

D

1e\frac{1}{e}

Answer

2e\frac{2}{e}

Explanation

Solution

((tan1y)x)dy=(1+y2)dx((tan−1y)−x)dy=(1+y^2)dx

dxdy+x1+y2=tan1y1+y2\frac{dx}{dy}+\frac{x}{1+y^2}=\frac{tan^{−1}y}{1+y^2}

I.F.=e11+y2dy=etan1yI.F.=e^{∫\frac{1}{1+y^2}dy}=e^{tan^{−1}y}

∴ Solution

x.etan1yetan1ytan1y1+y2dyx.e^{tan^{-1}y}∫\frac{e^{tan^{-1}}y^{tan^{-1}}y}{1+y^2}dy

Let

etan1y=te^{tan^{−1}}y=t

etan1y1+y2=dt\frac{e^{tan^{−1}y}}{1+y^2}=dt

=xetan1yln  tdt=t  lntt+cxe^{tan^{−1}y}∫ ln\; tdt =t \;ln t–t+c

=xetan1y=etan1ytan1yetan1y+c(i)xe^{tan^{−1}y}=e^{tan^{−1}y}tan^{−1}y−e^{tan^{-1}y}+c…(i)

∵ It passes through (1,0)c=2(1, 0) ⇒ c = 2

Now put y=tan1y = tan1, then

ex=ee\+2ex = e – e \+ 2

x=2e⇒x=\frac{2}{e}