Solveeit Logo

Question

Question: If the slope of one of the lines represented by ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0 be the sq...

If the slope of one of the lines represented by ax2 + 2hxy + by2 = 0 be the square of the other, then a+bh\frac{a + b}{h} + 8h2ab\frac{8h^{2}}{ab}=

A

4

B

6

C

8

D

None of these

Answer

6

Explanation

Solution

Let m and m2 be the slopes of the lines represented by ax2 + 2hxy + by2 = 0

Then, m + m2 = –2hb\frac{2h}{b} … (1)

m . m2 = ab\frac{a}{b} or m3 =ab\frac{a}{b} … (2)

from (1) (m + m2)3 = (2hb)3\left( - \frac{2h}{b} \right)^{3}

Ž m3 + m6 + 3.m.m2 (m + m2) = –8h3b3\frac{8h^{3}}{b^{3}}

Ž ab\frac{a}{b} + a2b2\frac{a^{2}}{b^{2}} + 3ab\frac{3a}{b} (2hb)\left( - \frac{2h}{b} \right) = 8h3b3- \frac{8h^{3}}{b^{3}} {from (1) and (2)}

Ž ab2\frac{a}{b^{2}} (a + b) +8h3b3\frac{8h^{3}}{b^{3}} = 6ahb2\frac{6ah}{b^{2}}

or (a+b)h\frac{(a + b)}{h} + 8h2ab\frac{8h^{2}}{ab} = 6