Question
Question: If the sides of triangle a, b, c be in A.P. then \(\tan \frac { A } { 2 } + \tan \frac { C } { 2 }\)...
If the sides of triangle a, b, c be in A.P. then tan2A+tan2C equal to
A
32cot2A
B
32cot2B
C
32cot2C
D
None of these
Answer
None of these
Explanation
Solution
tan2A+tan2C=s(s−a)(s−b)(s−c)+s(s−c)(s−a)(s−b)
= sbcot2B = 2s2bcot2B
∙∙ a, b, c in A.P.
∴ a+c=2b ⇒ 2s=3b = 3b2bcot2B
Hence, tan2A+tan2C=32cot2B.