Solveeit Logo

Question

Question: If the sides a, b, c of a triangle ABC form successive terms of G.P. with common ratio r (\> 1) then...

If the sides a, b, c of a triangle ABC form successive terms of G.P. with common ratio r (> 1) then which of the following is correct -

A

A >p/3

B

B ³p/3

C

C <p/3

D

A < B <p/3

Answer

A < B <p/3

Explanation

Solution

Let the sides of a triangle be a, ar, ar2

Q ar2 is greater side (r > 1)

\ a + ar > ar2

cos C = = < 12\frac { 1 } { 2 } Ž C > π3\frac { \pi } { 3 }

cos B = =

= 12\frac { 1 } { 2 } [r2+1r21]\left[ \mathrm { r } ^ { 2 } + \frac { 1 } { \mathrm { r } ^ { 2 } } - 1 \right]

= 12\frac { 1 } { 2 } [(r12)2+1]\left[ \left( \mathrm { r } - \frac { 1 } { 2 } \right) ^ { 2 } + 1 \right] >1/2 Ž B < p/3.

Also, a ar, ar2 Ž A < B < C Ž A < B < π3\frac { \pi } { 3 } < C.