Solveeit Logo

Question

Question: If the sides a, b , c of a triangle ABC are in A.P. then \(\frac{b}{c}\) belongs to –...

If the sides a, b , c of a triangle ABC are in A.P. then bc\frac{b}{c} belongs to –

A

(0,23)\left( 0,\frac{2}{3} \right)

B

(1, 2)

C

(23,2)\left( \frac{2}{3},2 \right)

D

(23,73)\left( \frac{2}{3},\frac{7}{3} \right)

Answer

(23,2)\left( \frac{2}{3},2 \right)

Explanation

Solution

a + b > c ̃ 2b – c + b > c

̃ bc>23\frac{b}{c} > \frac{2}{3}

Also, b + c > a ̃ b + c > 2b – c

̃ bc<2\frac{b}{c} < 2

Again c + a > b ̃ 2b > b

\ bc(23,2)\frac{b}{c} \in \left( \frac{2}{3},2 \right)