Question
Mathematics Question on Shortest Distance between Two Lines
If the shortest distance between the lines.
L1: r=(2+λ)i^+(1−3λ)j^+(3+4λ)k^, λ∈R.
L2: r=2(1+μ)i^+3(1+μ)j^+(5+μ)k^, μ∈R is nm, where gcd(m, n) = 1, then the value of m + n equals.
A
384
B
387
C
377
D
390
Answer
387
Explanation
Solution
The shortest distance between skew lines is given by:
Shortest Distance=∣p×q∣∣AB⋅(p×q)∣.
Step 1: Input values:
p=1 −3 4,q=1 1 1,AB=0 2 2.
Step 2: Compute p×q:
p×q=−4 −3 4.
Magnitude of p×q:
∣p×q∣=(−4)2+(−3)2+42=55.
Step 3: Calculate ∣AB⋅(p×q)∣:
AB⋅(p×q)=(0)(−4)+(2)(−3)+(2)(4)=−6+8=2. ∣AB⋅(p×q)∣=32.
Step 4: Shortest Distance:
Shortest Distance=35532.
Step 5: Simplify:
m=32,n=355,gcd(m,n)=1.
Sum:
m+n=32+355=387.
Final Answer:
387.