Solveeit Logo

Question

Mathematics Question on Shortest Distance between Two Lines

If the shortest distance between the lines.
L1: r=(2+λ)i^+(13λ)j^+(3+4λ)k^\vec{r} = (2 + \lambda)\hat{i} + (1 - 3\lambda)\hat{j} + (3 + 4\lambda)\hat{k}, λR\lambda \in \mathbb{R}.
L2: r=2(1+μ)i^+3(1+μ)j^+(5+μ)k^\vec{r} = 2(1 + \mu)\hat{i} + 3(1 + \mu)\hat{j} + (5 + \mu)\hat{k}, μR\mu \in \mathbb{R} is mn\frac{m}{\sqrt{n}}, where gcd(m, n) = 1, then the value of m + n equals.

A

384

B

387

C

377

D

390

Answer

387

Explanation

Solution

The shortest distance between skew lines is given by:

Shortest Distance=AB(p×q)p×q.\text{Shortest Distance} = \frac{| \mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q}) |}{|\mathbf{p} \times \mathbf{q}|}.

Step 1: Input values:

p=[1 3 4],q=[1 1 1],AB=[0 2 2].\mathbf{p} = \begin{bmatrix} 1 \\\ -3 \\\ 4 \end{bmatrix}, \quad \mathbf{q} = \begin{bmatrix} 1 \\\ 1 \\\ 1 \end{bmatrix}, \quad \mathbf{AB} = \begin{bmatrix} 0 \\\ 2 \\\ 2 \end{bmatrix}.

Step 2: Compute p×q\mathbf{p} \times \mathbf{q}:

p×q=[4 3 4].\mathbf{p} \times \mathbf{q} = \begin{bmatrix} -4 \\\ -3 \\\ 4 \end{bmatrix}.

Magnitude of p×q\mathbf{p} \times \mathbf{q}:

p×q=(4)2+(3)2+42=55.|\mathbf{p} \times \mathbf{q}| = \sqrt{(-4)^2 + (-3)^2 + 4^2} = \sqrt{55}.

Step 3: Calculate AB(p×q)|\mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q})|:

AB(p×q)=(0)(4)+(2)(3)+(2)(4)=6+8=2.\mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q}) = (0)(-4) + (2)(-3) + (2)(4) = -6 + 8 = 2. AB(p×q)=32.|\mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q})| = 32.

Step 4: Shortest Distance:

Shortest Distance=32355.\text{Shortest Distance} = \frac{32}{\sqrt{355}}.

Step 5: Simplify:

m=32,n=355,gcd(m,n)=1.m = 32, \quad n = 355, \quad \gcd(m, n) = 1.

Sum:

m+n=32+355=387.m + n = 32 + 355 = 387.

Final Answer:

387.\boxed{387.}