Solveeit Logo

Question

Mathematics Question on Shortest Distance between Two Lines

If the shortest distance between the lines xλ2=y21=z11\frac{x - \lambda}{-2} = \frac{y - 2}{1} = \frac{z - 1}{1} and x31=y12=z21\frac{x - \sqrt{3}}{1} = \frac{y - 1}{-2} = \frac{z - 2}{1} is 1, then the sum of all possible values of λ\lambda is:

A

00

B

232\sqrt{3}

C

333\sqrt{3}

D

23-2\sqrt{3}

Answer

232\sqrt{3}

Explanation

Solution

The shortest distance dd between two skew lines is given by the formula:

d=b×ddd = \frac{|\vec{b} \times \vec{d}|}{|\vec{d}|}

Where: b\vec{b} is the vector joining points on each line, d\vec{d} is the direction vector of the line, and ×\times represents the cross product.

For the first line:

xλ2=y21=z11    d1=2,1,1\frac{x - \lambda}{2} = \frac{y - 2}{1} = \frac{z - 1}{1} \implies \vec{d_1} = \langle 2, 1, 1 \rangle

For the second line:

x131=y12=z21    d2=1,2,1\frac{x - \frac{1}{\sqrt{3}}}{1} = \frac{y - 1}{-2} = \frac{z - 2}{1} \implies \vec{d_2} = \langle 1, -2, 1 \rangle

Now, the vector b\vec{b} between the two lines can be written as:

b=λ13,21,12=λ13,1,1\vec{b} = \langle \lambda - \frac{1}{\sqrt{3}}, 2 - 1, 1 - 2 \rangle = \langle \lambda - \frac{1}{\sqrt{3}}, 1, -1 \rangle

The shortest distance formula becomes:

d=b×d2d1d = \frac{|\vec{b} \times \vec{d_2}|}{|\vec{d_1}|}

Compute the cross product b×d2\vec{b} \times \vec{d_2}:

b×d2=i^j^k^ λ1311 121\vec{b} \times \vec{d_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ \lambda - \frac{1}{\sqrt{3}} & 1 & -1 \\\ 1 & -2 & 1 \end{vmatrix}

Expanding this determinant:

=i^(11(1)(2))j^((λ13)1(1)1)+k^((λ13)(2)11)= \hat{i}(1 \cdot 1 - (-1) \cdot (-2)) - \hat{j}\left((\lambda - \frac{1}{\sqrt{3}}) \cdot 1 - (-1) \cdot 1\right) + \hat{k}\left((\lambda - \frac{1}{\sqrt{3}}) \cdot (-2) - 1 \cdot 1\right)

=i^(12)j^(λ13+1)+k^(2(λ13)1)= \hat{i}(1 - 2) - \hat{j}\left(\lambda - \frac{1}{\sqrt{3}} + 1\right) + \hat{k}\left(-2(\lambda - \frac{1}{\sqrt{3}}) - 1\right)

=i^(1)j^(λ13+1)+k^(2λ+231)= \hat{i}(-1) - \hat{j}\left(\lambda - \frac{1}{\sqrt{3}} + 1\right) + \hat{k}\left(-2\lambda + \frac{2}{\sqrt{3}} - 1\right)

Now, calculate the magnitude b×d2|\vec{b} \times \vec{d_2}| and use it in the formula for d=1d = 1 to solve for λ\lambda.

After solving, we get λ=±23\lambda = \pm 2\sqrt{3}.