Solveeit Logo

Question

Mathematics Question on 3D Geometry

If the shortest distance between the lines x41=y+12=z3andxλ2=y+14=z25\frac{x - 4}{1} = \frac{y + 1}{2} = \frac{z}{-3} and \frac{x - \lambda}{2} = \frac{y + 1}{4} = \frac{z - 2}{-5} is 65\frac{6}{\sqrt{5}}, then the sum of all possible values of λ\lambda is:

A

55

B

88

C

77

D

1010

Answer

88

Explanation

Solution

Given:
0113+x+1+xdx=a+b2+c3\int_0^1 \frac{1}{\sqrt{3 + x} + \sqrt{1 + x}} \, dx = a + b \sqrt{2} + c \sqrt{3}

where a,b,ca, b, c are rational numbers.

Step 1. Simplifying the Integral: Consider
0113+x+1+xdx\int_0^1 \frac{1}{\sqrt{3 + x} + \sqrt{1 + x}} \, dx

Rationalizing the denominator:
013+x1+x(3+x)(1+x)dx=013+x1+x2dx\int_0^1 \frac{\sqrt{3 + x} - \sqrt{1 + x}}{(3 + x) - (1 + x)} \, dx = \int_0^1 \frac{\sqrt{3 + x} - \sqrt{1 + x}}{2} \, dx

Therefore:
=1201(3+x1+x)dx= \frac{1}{2} \int_0^1 \left( \sqrt{3 + x} - \sqrt{1 + x} \right) \, dx

Step 2. Separating the Integral:
=12(013+xdx011+xdx)= \frac{1}{2} \left( \int_0^1 \sqrt{3 + x} \, dx - \int_0^1 \sqrt{1 + x} \, dx \right)
Step 3. Evaluating Each Integral:
- For 013+xdx\int_0^1 \sqrt{3 + x} \, dx \:
3+xdx=23(3+x)3/2\int \sqrt{3 + x} \, dx = \frac{2}{3} (3 + x)^{3/2}
Evaluating from 0 to 1:

$\frac{2}{3} \left( (3 + x)^{3/2} \right) \Big|_0^1 = \frac{2}{3} \left( (4)^{3/2} - (3)^{3/2} \right) = \frac{2}{3} (8 - 3\sqrt{3})$  

For011+xdx\int_0^1 \sqrt{1 + x} \, dx:

$\int \sqrt{1 + x} \, dx = \frac{2}{3} (1 + x)^{3/2}$  


Evaluating from 0 to 1:  

23((1+x)3/2)01=23((2)3/2(1)3/2)=23(221)\frac{2}{3} \left( (1 + x)^{3/2} \right) \Big|_0^1 = \frac{2}{3} \left( (2)^{3/2} - (1)^{3/2} \right) = \frac{2}{3} (2\sqrt{2} - 1)

Step 4. Combining the Results:

12(23(833)23(221))\frac{1}{2} \left( \frac{2}{3} (8 - 3\sqrt{3}) - \frac{2}{3} (2\sqrt{2} - 1) \right)

Simplifying:

13(83322+1)=13(93322)\frac{1}{3} (8 - 3\sqrt{3} - 2\sqrt{2} + 1) = \frac{1}{3} (9 - 3\sqrt{3} - 2\sqrt{2})

Thus:

a=3,b=23,c=1a = 3, \quad b = -\frac{2}{3}, \quad c = -1

Step 5. Calculating 2a+3b4c2a + 3b - 4c:
2a+3b4c=2×3+3×(23)4×(1)2a + 3b - 4c = 2 \times 3 + 3 \times \left( -\frac{2}{3} \right) - 4 \times (-1)
=62+4=8= 6 − 2 + 4 = 8