Question
Mathematics Question on 3D Geometry
If the shortest distance between the lines 1x−4=2y+1=−3zand2x−λ=4y+1=−5z−2 is 56, then the sum of all possible values of λ is:
5
8
7
10
8
Solution
Given:
∫013+x+1+x1dx=a+b2+c3
where a,b,c are rational numbers.
Step 1. Simplifying the Integral: Consider
∫013+x+1+x1dx
Rationalizing the denominator:
∫01(3+x)−(1+x)3+x−1+xdx=∫0123+x−1+xdx
Therefore:
=21∫01(3+x−1+x)dx
Step 2. Separating the Integral:
=21(∫013+xdx−∫011+xdx)
Step 3. Evaluating Each Integral:
- For ∫013+xdx
∫3+xdx=32(3+x)3/2
Evaluating from 0 to 1:
$\frac{2}{3} \left( (3 + x)^{3/2} \right) \Big|_0^1 = \frac{2}{3} \left( (4)^{3/2} - (3)^{3/2} \right) = \frac{2}{3} (8 - 3\sqrt{3})$
For∫011+xdx:
$\int \sqrt{1 + x} \, dx = \frac{2}{3} (1 + x)^{3/2}$
Evaluating from 0 to 1:
32((1+x)3/2)01=32((2)3/2−(1)3/2)=32(22−1)
Step 4. Combining the Results:
21(32(8−33)−32(22−1))
Simplifying:
31(8−33−22+1)=31(9−33−22)
Thus:
a=3,b=−32,c=−1
Step 5. Calculating 2a+3b−4c:
2a+3b−4c=2×3+3×(−32)−4×(−1)
=6−2+4=8