Solveeit Logo

Question

Mathematics Question on distance between two points

If the shortest distance between the lines x12=y23=z3λ  and  x21=y44=z55  is  13\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{λ}\; and\; \frac{x-2}{1 }= \frac{y-4}{4 }= \frac{z-5}{5 }\;is\; \frac{1}{\sqrt3}, then the sum of all possible values of λλ is :

A

16

B

6

C

12

D

15

Answer

16

Explanation

Solution

a1=i^+2j^+3k^\overrightarrow a_1 = \hat i+2\hat j+3\hat k

a2=2i^+4j^+5k^\overrightarrow a_2 = 2\hat i + 4\hat j + 5\hat k

p=2i^+3j^+λk^,q=i^+4j^+5k^\overrightarrow p = 2\hat i+3\hat j+λ\hat k,\overrightarrow q = \hat i+4\hat j+5\hat k

p×q=(154λ)i^(10λ)j^+5k^∴ \overrightarrow p × \overrightarrow q = (15-4λ)\hat i-(10-λ)\hat j+5\hat k

∴ Shortest distance between the lines = (154λ)2(10λ)+10(154λ)2+(10λ)2+25=13 | \frac{(15-4λ)-2(10-λ)+10}{√(15-4λ)^2+(10-λ)^2+25}| = \frac{1}{√3}

5λ280λ+275=0⇒ 5λ^2-80λ+275=0

the sum of all possible values of λ is : = 805=16\frac{80}{5} = 16

Hence, the correct option is (A): 1616