Solveeit Logo

Question

Mathematics Question on 3D Geometry

If the shortest distance between the lines xλ2=y43=z34\frac{x - \lambda}{2} = \frac{y - 4}{3} = \frac{z - 3}{4} and x24=y46=z78\frac{x - 2}{4} = \frac{y - 4}{6} = \frac{z - 7}{8} is 1329\frac{13}{\sqrt{29}}, then a value of λ\lambda is:

A

1325-\frac{13}{25}

B

1325\frac{13}{25}

C

1

D

-1

Answer

1

Explanation

Solution

Let the parametric equations of the two lines be:

r1=(λi^+4j^+3k^)+α(2i^+3j^+4k^)\vec{r}_1 = (\lambda \hat{i} + 4 \hat{j} + 3 \hat{k}) + \alpha (2 \hat{i} + 3 \hat{j} + 4 \hat{k}),

r2=(2i^+6j^+7k^)+β(2i^+3j^+4k^)\vec{r}_2 = (2 \hat{i} + 6 \hat{j} + 7 \hat{k}) + \beta (2 \hat{i} + 3 \hat{j} + 4 \hat{k}).

Here, the direction vector for both lines is:

b=2i^+3j^+4k^\vec{b} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k},

and the position vectors of points on the lines are:

a1=λi^+4j^+3k^\vec{a}_1 = \lambda \hat{i} + 4 \hat{j} + 3 \hat{k}, a2=2i^+6j^+7k^\vec{a}_2 = 2 \hat{i} + 6 \hat{j} + 7 \hat{k}.

The formula for the shortest distance between two skew lines is:

Shortest distance=b×(a2a1)bb=1329\text{Shortest distance} = \frac{|\vec{b} \times (\vec{a}_2 - \vec{a}_1) \cdot \vec{b}|}{|\vec{b}|} = \frac{13}{\sqrt{29}}.

Substituting a2a1\vec{a}_2 - \vec{a}_1:

a2a1=(2λ)i^+2j^+4k^\vec{a}_2 - \vec{a}_1 = (2 - \lambda) \hat{i} + 2 \hat{j} + 4 \hat{k}.

The cross product b×(a2a1)\vec{b} \times (\vec{a}_2 - \vec{a}_1) simplifies as follows:

b×(a2a1)=i^j^k^ 234 2λ24\vec{b} \times (\vec{a}_2 - \vec{a}_1) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ 2 & 3 & 4 \\\ 2 - \lambda & 2 & 4 \end{vmatrix}.

Solving this determinant gives:

b×(a2a1)=(8j^+12i^+4(2λ)j^)\vec{b} \times (\vec{a}_2 - \vec{a}_1) = (-8 \hat{j} + 12 \hat{i} + 4 (2 - \lambda) \hat{j}).

Taking the magnitude and using the formula for shortest distance:

Shortest distance=(8j^+12i^)13\text{Shortest distance} = \frac{|(-8 \hat{j} + 12 \hat{i})|}{13}.

Finally solving the quadratic for λ=1\lambda = 1.