Question
Mathematics Question on Shortest Distance between Two Lines
If the shortest distance between the lines 3x−λ=−1y−2=1z−1 and −3x+2=2y+5=4z−4 is 3044, then the largest possible value of ∣λ∣ is equal to ________.
Answer
Let
a1=λi^+2j^+k^
a2=−2i^−5j^+4k^
p=3i^−j^+k^
q=3i^+2j^+4k^
Now, the vector a1−a2 is given by:
(λ+2)i^+7j^−3k^
Calculate p×q:
p×q=i^\3\3j^−12k^14=−6i^−15j^+3k^
The shortest distance d is given by:
d=∣p×q∣∣(a1−a2)⋅(p×q)∣
Substitute the values:
d=(−6)2+(−15)2+32∣−6λ−12−105+9∣=330∣6λ+126∣
Equating, we get:
3044=330∣6λ+126∣
132=∣6λ+126∣
Solving for λ:
λ=1orλ=−43
Thus, the largest possible value of ∣λ∣ is:
∣λ∣=43