Solveeit Logo

Question

Mathematics Question on Shortest Distance between Two Lines

If the shortest distance between the lines xλ3=y21=z11\frac{x - \lambda}{3} = \frac{y - 2}{-1} = \frac{z - 1}{1} and x+23=y+52=z44\frac{x + 2}{-3} = \frac{y + 5}{2} = \frac{z - 4}{4} is 4430,\frac{44}{\sqrt{30}}, then the largest possible value of λ|\lambda| is equal to ________.

Answer

Let
a1=λi^+2j^+k^\vec{a}_1 = \lambda \hat{i} + 2 \hat{j} + \hat{k}
a2=2i^5j^+4k^\vec{a}_2 = -2 \hat{i} - 5 \hat{j} + 4 \hat{k}
p=3i^j^+k^\vec{p} = 3 \hat{i} - \hat{j} + \hat{k}
q=3i^+2j^+4k^\vec{q} = 3 \hat{i} + 2 \hat{j} + 4 \hat{k}
Now, the vector a1a2\vec{a}_1 - \vec{a}_2 is given by:
(λ+2)i^+7j^3k^(\lambda + 2) \hat{i} + 7 \hat{j} - 3 \hat{k}
Calculate p×q\vec{p} \times \vec{q}:
p×q=i^j^k^\311\324=6i^15j^+3k^\vec{p} \times \vec{q} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\\3 & -1 & 1 \\\3 & 2 & 4\end{vmatrix}= -6 \hat{i} - 15 \hat{j} + 3 \hat{k}
The shortest distance dd is given by:
d=(a1a2)(p×q)p×qd = \frac{|(\vec{a}_1 - \vec{a}_2) \cdot (\vec{p} \times \vec{q})|}{|\vec{p} \times \vec{q}|}
Substitute the values:
d=6λ12105+9(6)2+(15)2+32=6λ+126330d = \frac{| -6\lambda - 12 - 105 + 9|}{\sqrt{(-6)^2 + (-15)^2 + 3^2}} = \frac{|6\lambda + 126|}{3 \sqrt{30}}
Equating, we get:
4430=6λ+126330\frac{44}{\sqrt{30}} = \frac{|6\lambda + 126|}{3 \sqrt{30}}
132=6λ+126132 = |6\lambda + 126|
Solving for λ\lambda:
λ=1orλ=43\lambda = 1 \quad \text{or} \quad \lambda = -43
Thus, the largest possible value of λ|\lambda| is:
λ=43|\lambda| = 43