Solveeit Logo

Question

Question: If the shortest distance between the lines \(\dfrac{x-1}{\alpha }=\dfrac{y+1}{-1}=\dfrac{z}{1},\left...

If the shortest distance between the lines x1α=y+11=z1,(α1) and x+y+z+1=0=2xy+z+3 is 13\dfrac{x-1}{\alpha }=\dfrac{y+1}{-1}=\dfrac{z}{1},\left( \alpha \ne -1 \right)\ and\ x+y+z+1=0=2x-y+z+3\ is\ \dfrac{1}{\sqrt{3}} , then the value of α\alpha is:
A. 3219\dfrac{32}{19}
B. 1619-\dfrac{16}{19}
C. 1916-\dfrac{19}{16}
D. 1932\dfrac{19}{32}

Explanation

Solution

First, assume x = 0, and find the value of y and z by putting x = 0 in the equation x + y + z + 1 = 0 and 2x – y + z + 3 = 0. Then, we will get the direction ratios of both the lines. After that use the given formula to find the shortest distance between the given lines and equate it to 13\dfrac{1}{\sqrt{3}}.
Shortest distance between two lines,
l1:xx1a1=yy1b1=zz1c1 l2:xx2a2=yy2b2=zz2c2 x2x1y2y1z2z1 a1b1c1 a2b2c2 (a1b2a2b1)2+(b1c2b2c1)2+(c1a2c2a1)2 \begin{aligned} & {{l}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}} \\\ & {{l}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}} \\\ & \dfrac{\left| \begin{matrix} {{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\\ {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\\ \end{matrix} \right|}{\sqrt{{{\left( {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right)}^{2}}+{{\left( {{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}} \right)}^{2}}+{{\left( {{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}} \right)}^{2}}}} \\\ \end{aligned}

Complete step-by-step answer:
Given, the shortest distance between the lines x1α=y+11=z1 and x+y+z+1=0=2xy+z+3 is 13\dfrac{x-1}{\alpha }=\dfrac{y+1}{-1}=\dfrac{z}{1}\ and\ x+y+z+1=0=2x-y+z+3\ is\ \dfrac{1}{\sqrt{3}}.
Now, let us consider x+y+z+1=0 and 2xy+z+3x+y+z+1=0\ and\ 2x-y+z+3.
Let us assume, the value of x = 0. Putting x = 0 in equation x+y+z+1=0x+y+z+1=0, we will get,
0+y+z+1=0 y+z+1=0.........(1) \begin{aligned} & 0+y+z+1=0 \\\ & \Rightarrow y+z+1=0.........\left( 1 \right) \\\ \end{aligned}
Putting x = 0, in equation 2xy+z+32x-y+z+3, we will get,
2(0)y+z+3=0 y+z+3=0.........(2) \begin{aligned} & 2\left( 0 \right)-y+z+3=0 \\\ & \Rightarrow -y+z+3=0.........\left( 2 \right) \\\ \end{aligned}
Now, we will solve equation (1) and (2).
Adding equation (1) and (2), we get,
(y+z+1)+(y+z+3)=0 y+z+1y+z+3=0 2z+4=0 2z=(4) z=42 z=2 \begin{aligned} & \Rightarrow \left( y+z+1 \right)+\left( -y+z+3 \right)=0 \\\ & \Rightarrow y+z+1-y+z+3=0 \\\ & \Rightarrow 2z+4=0 \\\ & \Rightarrow 2z=\left( -4 \right) \\\ & \therefore z=\dfrac{-4}{2} \\\ & \therefore z=-2 \\\ \end{aligned}
Putting z=(2)z=\left( -2 \right) in equation (1), we get,
y+(2)+1=0 y1=0 y=1 \begin{aligned} & \Rightarrow y+\left( -2 \right)+1=0 \\\ & \Rightarrow y-1=0 \\\ & \Rightarrow y=1 \\\ \end{aligned}
For any line, ax+by+cz+d=0ax+by+cz+d=0, a, b and c represents direction ratios of the line. Therefore, for given line x+y+z+1=0x+y+z+1=0, line has direction ratios 1, 1, 1.
For the given line 2xy+z+3=02x-y+z+3=0, line has direction ratios 2, -1, 1.
We know that line will be perpendicular when, a + b + c = 0 and 2a – b + c = 0.
So, using the cross multiplication method, we get,
a1+1=b21=c12 a2=b1=c3 \begin{aligned} & \dfrac{a}{1+1}=\dfrac{b}{2-1}=\dfrac{c}{-1-2} \\\ & \Rightarrow \dfrac{a}{2}=\dfrac{b}{1}=\dfrac{c}{-3} \\\ \end{aligned}
So, we get (2, 1, -3) as direction ratios.
Now, we can write this as,
x2=y11=z+23 For, xx1a1=yy1b1=zz1c1 and xx2a2=yy2b2=zz2c2 \begin{aligned} & \dfrac{x}{2}=\dfrac{y-1}{1}=\dfrac{z+2}{-3} \\\ & For, \\\ & \Rightarrow \dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\ and \\\ & \Rightarrow \dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}} \\\ \end{aligned}
By, applying the formula we get the shortest distance,
Δ=x2x1y2y1z2z1 a1b1c1 a2b2c2 (a1b2a2b1)2+(b1c2b2c1)2+(c1a2c2a1)2\Delta =\dfrac{\left| \begin{matrix} {{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\\ {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\\ \end{matrix} \right|}{\sqrt{{{\left( {{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}} \right)}^{2}}+{{\left( {{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}} \right)}^{2}}+{{\left( {{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}} \right)}^{2}}}}
We have lines as x1α=y+11=z1\dfrac{x-1}{\alpha }=\dfrac{y+1}{-1}=\dfrac{z}{1} and x2=y11=z+23\dfrac{x}{2}=\dfrac{y-1}{1}=\dfrac{z+2}{-3}. Substituting the values in the above formula of shortest distance for the equations of given lines, we get,
Δ=011(1)20 α11 213 (α+2)2+(31)2+(2+3α)2\Delta =\dfrac{\left| \begin{matrix} 0-1 & 1-(-1) & -2-0 \\\ \alpha & -1 & 1 \\\ 2 & 1 & -3 \\\ \end{matrix} \right|}{\sqrt{{{\left( \alpha +2 \right)}^{2}}+{{\left( 3-1 \right)}^{2}}+{{\left( 2+3\alpha \right)}^{2}}}}

-1 & 2 & -2 \\\ \alpha & -1 & 1 \\\ 2 & 1 & -3 \\\ \end{matrix} \right|}{\sqrt{{{\left( \alpha +2 \right)}^{2}}+{{\left( 2 \right)}^{2}}+{{\left( 2+3\alpha \right)}^{2}}}}$$ Now, we will expand the determinant and simplify the denominator using the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ . $$\begin{aligned} & \Delta =\dfrac{-1\left[ 3-1 \right]-2\left[ -3\alpha -2 \right]-2\left[ \alpha +2 \right]}{\sqrt{{{\alpha }^{2}}+4\alpha +4+4+4+12\alpha +9{{\alpha }^{2}}}} \\\ & \Rightarrow \Delta =\dfrac{-2+6\alpha +4-2\alpha -4}{\sqrt{10{{\alpha }^{2}}+16\alpha +12}} \\\ & \Rightarrow \Delta =\dfrac{4\alpha -2}{\sqrt{10{{\alpha }^{2}}+16\alpha +12}}.........\left( 1 \right) \\\ \end{aligned}$$ Now, equating the value of equation (1) with $\dfrac{1}{\sqrt{3}}$, shortest distance between the given lines, we get, $\begin{aligned} & \dfrac{1}{\sqrt{3}}=\dfrac{4\alpha -2}{\sqrt{10{{\alpha }^{2}}+16\alpha +12}} \\\ & \Rightarrow 3{{\left( 4\alpha -2 \right)}^{2}}=10{{\alpha }^{2}}+16\alpha +12 \\\ & \Rightarrow 3\left[ 16{{\alpha }^{2}}+4-16\alpha \right]=10{{\alpha }^{2}}+16\alpha +12 \\\ \end{aligned}$ On expanding the above equation, we get, $$\begin{aligned} & \Rightarrow 48{{\alpha }^{2}}+12-48\alpha =10{{\alpha }^{2}}+16\alpha +12 \\\ & \Rightarrow 48{{\alpha }^{2}}-10{{\alpha }^{2}}+12-12-48\alpha -16\alpha =0 \\\ & \Rightarrow 38{{\alpha }^{2}}-64\alpha =0 \\\ & \Rightarrow 38{{\alpha }^{2}}=64\alpha \\\ & \text{since, }\alpha \ne 0 \\\ & \therefore 38\alpha =64 \\\ & \Rightarrow \alpha =\dfrac{64}{38} \\\ \end{aligned}$$ Simplifying further ,we get $\alpha =\dfrac{32}{19}$ **Note:** In this equation, students may try to solve the equations of the given lines first. But in the question, we have given an equation of two lines in three variables. Hence, we need to assume the value of one either x, y or z to find the value of other variables. After that only, we can find the direction ratios of the given lines.