Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If the shortest between the lines x+62=y63=z64\frac{x+\sqrt{6}}{2}=\frac{y-\sqrt{6}}{3}=\frac{z-\sqrt{6}}{4} and xλ3=y264=z+265\frac{x-\lambda}{3}=\frac{y-2 \sqrt{6}}{4}=\frac{z+2 \sqrt{6}}{5} is 66 , then the square of sum of all possible values of λ\lambda is

Answer

The correct answer is 624
Shortest distance between the lines
2x+6​​=3y−6​​=4z−6​​
3x−λ​=4y−26​​=52+26​​ is 6
Vector along line of shortest distance
=∣∣​i23​j34​k45​∣∣​, ⇒−i^+2j^​−k (its magnitude is 6​ )
Now 6​1​∣∣​6​+λ23​6​34​−36​45​∣∣​=±6
⇒λ=−26​,106​
So, square of sum of these values is 624 .