Solveeit Logo

Question

Question: If the short series limit of the Balmer series for hydrogen is 3646 Å. Calculate the atomic no. of t...

If the short series limit of the Balmer series for hydrogen is 3646 Å. Calculate the atomic no. of the element which gives X-ray wavelength down to 1.0 Å. Identify the element –

A

z = 21

B

z = 31

C

z = 11

D

z = 5

Answer

z = 31

Explanation

Solution

The short limit of the Balmer series is given by

v=Ze22ε0nhv = \frac { Z e ^ { 2 } } { 2 \varepsilon _ { 0 } n h }= 1/l = R (12212)\left( \frac { 1 } { 2 ^ { 2 } } - \frac { 1 } { \infty ^ { 2 } } \right) = R/4

\R = 4/l = (4/3646) × 1010 m–1

Further the wavelengths of the Ka series are given by the relation

rn2r \propto n ^ { 2 }= 1/l = R (Z – 1)2

The maximum wave number correspnods to

n =  and therfore, we must have

rn2r \propto n ^ { 2 }= 1/l = R (Z – 1)2 or (Z – 1)2 = 1Rλ\frac { 1 } { \mathrm { R } \lambda } = 3646×10104×1×1010\frac { 3646 \times 10 ^ { - 10 } } { 4 \times 1 \times 10 ^ { - 10 } }

= 911.5 \Z – 1) =911.5\sqrt { 911.5 } E=365E=7.2EE ^ { \prime } = \frac { 36 } { 5 } E = 7.2 E 30.2

Or Z = 31.2 \cong 31 Thus the atomic number of the element concerned is 31.The element having atomic number Z = 31 is Gallium.