Solveeit Logo

Question

Mathematics Question on Sets and Relations

If the set R=(a,b):a+5b=42,a,bNR = {(a, b) : a + 5b = 42, a, b \in \mathbb{N}} has mm elements and n=1m(1+in)=x+iy\sum_{n=1}^m (1 + i^n) = x + iy, where i=1i = \sqrt{-1}, then the value of m+x+ym + x + y is:

A

8

B

12

C

4

D

5

Answer

12

Explanation

Solution

From a+5b=42a + 5b = 42, where a,bNa, b \in \mathbb{N}, we have:
a=425b.a = 42 - 5b.
Since a>0a > 0, we require:425b>0    b<425    b8.42 - 5b > 0 \implies b < \frac{42}{5} \implies b \leq 8.
The possible values of (a,b)(a, b) are:
(37,1),(32,2),(27,3),(22,4),(17,5),(12,6),(7,7),(2,8).(37, 1), (32, 2), (27, 3), (22, 4), (17, 5), (12, 6), (7, 7), (2, 8).
Thus, m=8m = 8.
The sum is:
n=18(1in).\sum_{n=1}^{8}(1 - i^n).
For n4n \geq 4, ini^n repeats every 4 terms:
i1=i,  i2=1,  i3=i,  i4=1.i^1 = i, \; i^2 = -1, \; i^3 = -i, \; i^4 = 1.
Compute:
n=18(1in)=(1i)+(1(1))+(1(i))+(11)+(1i)+(1(1))+(1(i))+(11).\sum_{n=1}^{8}(1 - i^n) = (1 - i) + (1 - (-1)) + (1 - (-i)) + (1 - 1) + (1 - i) + (1 - (-1)) + (1 - (-i)) + (1 - 1).
Simplify:
=(1i)+2+(1+i)+0+(1i)+2+(1+i)+0=5i+i=5.= (1 - i) + 2 + (1 + i) + 0 + (1 - i) + 2 + (1 + i) + 0 = 5 - i + i = 5.
Thus:
x+y=5,  m=8,  m+x+y=8+51=12.x + y = 5, \; m = 8, \; m + x + y = 8 + 5 - 1 = 12.
Final Answer: 12.