Question
Mathematics Question on Sets and Relations
If the set R=(a,b):a+5b=42,a,b∈N has m elements and ∑n=1m(1+in)=x+iy, where i=−1, then the value of m+x+y is:
A
8
B
12
C
4
D
5
Answer
12
Explanation
Solution
From a+5b=42, where a,b∈N, we have:
a=42−5b.
Since a>0, we require:42−5b>0⟹b<542⟹b≤8.
The possible values of (a,b) are:
(37,1),(32,2),(27,3),(22,4),(17,5),(12,6),(7,7),(2,8).
Thus, m=8.
The sum is:
∑n=18(1−in).
For n≥4, in repeats every 4 terms:
i1=i,i2=−1,i3=−i,i4=1.
Compute:
∑n=18(1−in)=(1−i)+(1−(−1))+(1−(−i))+(1−1)+(1−i)+(1−(−1))+(1−(−i))+(1−1).
Simplify:
=(1−i)+2+(1+i)+0+(1−i)+2+(1+i)+0=5−i+i=5.
Thus:
x+y=5,m=8,m+x+y=8+5−1=12.
Final Answer: 12.