Solveeit Logo

Question

Mathematics Question on Ellipse

If the semi-major axis of an ellipse is 3 and the latus rectum is 169,\frac{16}{9}, then the standard equation of the ellipse is

A

x29+y28=1\frac{x^{2}}{9}+\frac{y^{2}}{8}=1

B

x28+y29=1\frac{x^{2}}{8}+\frac{y^{2}}{9}=1

C

x29+3y28=1\frac{x^{2}}{9}+\frac{3y^{2}}{8}=1

D

3x28+y29=1\frac{3x^{2}}{8}+\frac{y^{2}}{9}=1

Answer

x29+3y28=1\frac{x^{2}}{9}+\frac{3y^{2}}{8}=1

Explanation

Solution

Let the equation of ellipse be
x2a2+y2b2=1,a>b\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b
Now, it is given that semi-major axis =a=3=a=3
Latusrectum =2b2a=169=\frac{2 b^{2}}{a}=\frac{16}{9}
b2=89a=89×3=83\Rightarrow b^{2}=\frac{8}{9} a=\frac{8}{9} \times 3=\frac{8}{3}
\therefore Equation of ellipse is
x29+3y28=1\frac{x^{2}}{9}+\frac{3 y^{2}}{8}=1