Solveeit Logo

Question

Mathematics Question on Arithmetic Progression

If the second, third, and fourth terms in the expansion of (x+y)n(x + y)^n are 135135, 3030, and 103\frac{10}{3}, respectively, then 6(n3+x2+y)6\left(n^3 + x^2 + y\right) is equal to ______.

Answer

The given terms are:

nC1xn1y=135nC_1 x^{n-1} y = 135 (i)

nC2xn2y2=30nC_2 x^{n-2} y^2 = 30 (ii)

nC3xn3y3=103nC_3 x^{n-3} y^3 = \frac{10}{3} (iii)

Step 1: Using (i) and (ii)

nC1xnC2y=92\frac{nC_1 x}{nC_2 y} = \frac{9}{2} (iv)

Step 2: Using (ii) and (iii)

nC2xnC3y=9\frac{nC_2 x}{nC_3 y} = 9 (v)

From (iv) and (v), solve for nC2nC_2:

nC1nC3(nC2)2=12\frac{nC_1 \cdot nC_3}{(nC_2)^2} = \frac{1}{2}

Substitute nC1=nnC_1 = n, nC2=n(n1)2nC_2 = \frac{n(n-1)}{2}, nC3=n(n1)(n2)6nC_3 = \frac{n(n-1)(n-2)}{6}:

nn(n1)(n2)6(n(n1)2)2=12\frac{n \cdot \frac{n(n-1)(n-2)}{6}}{\left(\frac{n(n-1)}{2}\right)^2} = \frac{1}{2}

2n2(n2)6n(n1)=12\frac{2n^2(n-2)}{6n(n-1)} = \frac{1}{2}

2n(n2)=3(n1)2n(n-2) = 3(n-1)

2n27n+3=02n^2 - 7n + 3 = 0

n=5(as n is a positive integer)n = 5 \quad \text{(as $n$ is a positive integer)}

Step 3: Solving for xx and yy

From (v):

xy=9    x=9y\frac{x}{y} = 9 \implies x = 9y

Substitute in (i):

5C1(9y)4y=1355C_1 (9y)^4 y = 135

5C194y5=1355C_1 \cdot 94 y^5 = 135

5819y5=1355 \cdot 81 \cdot 9 \cdot y^5 = 135

y=13,x=3y = \frac{1}{3}, \quad x = 3

Step 4: Calculating the final expression

6(n3+x2+y)6(n^3 + x^2 + y)

=6(53+32+13)= 6(5^3 + 3^2 + \frac{1}{3})

=6(125+9+13)= 6(125 + 9 + \frac{1}{3})

=6(134+13)= 6(134 + \frac{1}{3})

=806= 806