Question
Mathematics Question on Vector Algebra
If the scalar product of the vector i^+j^+2k^ with the unit vector along mi^+2j^+3k^ is equal to 2, then one of the values of m is
A
3
B
4
C
5
D
6
Answer
6
Explanation
Solution
The unit vector along mi^+2j^+3k^ is m2+4+9mi^+2j^+3k^=m2+13mi^+2j^+3k^ Now, (i^+j^+2k^).(m2+13mi^+2j^+3k^)=2
⇒ m2+13m+m2+132+m2+136=2
⇒ m2+13m+8=2
Squaring on both sides, we get
⇒ (m+8)2=4(m2+13)
⇒ m2+16m+64=4m2+52
⇒ 3m2−16m−12=0
⇒ m=616±256+144=616±20
⇒ m=6,−32
⇒ m=6, as −32 is not possible.