Solveeit Logo

Question

Mathematics Question on Vector Algebra

If the scalar product of the vector i^+j^+2k^\hat{i}+\hat{j}+2\hat{k} with the unit vector along mi^+2j^+3k^m\hat{i}+2\hat{j}+3\hat{k} is equal to 22, then one of the values of mm is

A

3

B

4

C

5

D

6

Answer

6

Explanation

Solution

The unit vector along mi^+2j^+3k^m\hat{i}+2\hat{j}+3\hat{k} is mi^+2j^+3k^m2+4+9=mi^+2j^+3k^m2+13\frac{m\hat{i}+2\hat{j}+3\hat{k}}{\sqrt{{{m}^{2}}+4+9}}=\frac{m\hat{i}+2\hat{j}+3\hat{k}}{\sqrt{{{m}^{2}}+13}} Now, (i^+j^+2k^).(mi^+2j^+3k^m2+13)=2(\hat{i}+\hat{j}+2\hat{k}).\left( \frac{m\hat{i}+2\hat{j}+3\hat{k}}{\sqrt{{{m}^{2}}+13}} \right)=2
\Rightarrow mm2+13+2m2+13+6m2+13=2\frac{m}{\sqrt{{{m}^{2}}+13}}+\frac{2}{\sqrt{{{m}^{2}}+13}}+\frac{6}{\sqrt{{{m}^{2}}+13}}=2
\Rightarrow m+8m2+13=2\frac{m+8}{\sqrt{{{m}^{2}}+13}}=2
Squaring on both sides, we get
\Rightarrow (m+8)2=4(m2+13){{(m+8)}^{2}}=4({{m}^{2}}+13)
\Rightarrow m2+16m+64=4m2+52{{m}^{2}}+16m+64=4{{m}^{2}}+52
\Rightarrow 3m216m12=03{{m}^{2}}-16m-12=0
\Rightarrow m=16±256+1446=16±206m=\frac{16\pm \sqrt{256+144}}{6}=\frac{16\pm 20}{6}
\Rightarrow m=6,23m=6,-\frac{2}{3}
\Rightarrow m=6,m=6, as 23-\frac{2}{3} is not possible.