Solveeit Logo

Question

Question: If the roots of the quadratic equation \({{x}^{2}}+px+q=0\) are \(\tan 30{}^\circ \) and \(\tan 15{}...

If the roots of the quadratic equation x2+px+q=0{{x}^{2}}+px+q=0 are tan30\tan 30{}^\circ and tan15\tan 15{}^\circ respectively, then the value of 2+qp2+q-p is

  1. 33
  2. 00
  3. 11
  4. 22
Explanation

Solution

In this problem we need to calculate the value of 2+qp2+q-p where tan30\tan 30{}^\circ and tan15\tan 15{}^\circ are roots of the quadratic equation x2+px+q=0{{x}^{2}}+px+q=0. Here we will use the relation between the coefficients of the quadratic equation and roots of the quadratic equation. For this we will compare the given quadratic equation with ax2+bx+c=0a{{x}^{2}}+bx+c=0. Here we will have the value of pp and qq , after having the values calculate the value of qpq-p . Use the appropriate trigonometric formulas and values to simplify the value of qpq-p. After having the value of qpq-p, simply calculate the required value.

Complete step-by-step solution:
The quadratic equation is x2+px+q=0{{x}^{2}}+px+q=0.
Compare the above quadratic equation with standard quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0.
a=1a=1 , b=pb=p and c=qc=q .
If α\alpha , β\beta are the roots of the quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0, then the relation between the roots and coefficients of the quadratic equation are given by
α+β=ba\alpha +\beta =-\dfrac{b}{a} and αβ=ca\alpha \beta =\dfrac{c}{a} .
In the problem they have mentioned that tan30\tan 30{}^\circ and tan15\tan 15{}^\circ are roots of the quadratic equation x2+px+q=0{{x}^{2}}+px+q=0. So we can write
tan30+tan15=p1 tan30+tan15=p \begin{aligned} & \tan 30{}^\circ +\tan 15{}^\circ =-\dfrac{p}{1} \\\ & \Rightarrow \tan 30{}^\circ +\tan 15{}^\circ =-p \\\ \end{aligned} and tan30.tan15=q1 tan30.tan15=q \begin{aligned} & \tan 30{}^\circ .\tan 15{}^\circ =\dfrac{q}{1} \\\ & \Rightarrow \tan 30{}^\circ .\tan 15{}^\circ =q \\\ \end{aligned}
Now the value of qpq-p will be
qp=tan30.tan15+tan30+tan15...(i)q-p=\tan 30{}^\circ .\tan 15{}^\circ +\tan 30{}^\circ +\tan 15{}^\circ ...\left( \text{i} \right)
From the trigonometric formula tan(A+B)=tanA+tanB1tanA.tanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B} , we can write the value of tan30+tan15\tan 30{}^\circ +\tan 15{}^\circ as tan30+tan15=[tan(30+15)][1tan30.tan15]\tan 30{}^\circ +\tan 15{}^\circ =\left[ \tan \left( 30{}^\circ +15{}^\circ \right) \right]\left[ 1-\tan 30{}^\circ .\tan 15{}^\circ \right] . Substituting this value in the equation (i)\left( \text{i} \right) , then we will have
qp=tan30.tan15+[tan(30+15)][1tan30.tan15] qp=tan30.tan15+[tan45(1tan30.tan15)] \begin{aligned} & q-p=\tan 30{}^\circ .\tan 15{}^\circ +\left[ \tan \left( 30{}^\circ +15{}^\circ \right) \right]\left[ 1-\tan 30{}^\circ .\tan 15{}^\circ \right] \\\ & \Rightarrow q-p=\tan 30{}^\circ .\tan 15{}^\circ +\left[ \tan 45{}^\circ \left( 1-\tan 30{}^\circ .\tan 15{}^\circ \right) \right] \\\ \end{aligned}
We know that the value of tan45=1\tan 45{}^\circ =1 . substituting this value in the above equation, then we will get
qp=tan30.tan15+[1(1tan30.tan15)] qp=tan30.tan15+1tan30.tan15 qp=1 \begin{aligned} & q-p=\tan 30{}^\circ .\tan 15{}^\circ +\left[ 1\left( 1-\tan 30{}^\circ .\tan 15{}^\circ \right) \right] \\\ & \Rightarrow q-p=\tan 30{}^\circ .\tan 15{}^\circ +1-\tan 30{}^\circ .\tan 15{}^\circ \\\ & \Rightarrow q-p=1 \\\ \end{aligned}
Add 22 on both sides of the above equation, then we will have
2+qp=1+2 2+qp=3 \begin{aligned} & 2+q-p=1+2 \\\ & \therefore 2+q-p=3 \\\ \end{aligned}
Hence option 1 is the correct answer.

Note: We can also solve the problem in another method. In this method we will first calculate the values of pp and qq by using the trigonometric formula tan(A+B)=tanA+tanB1tanA.tanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B} individually. After simplifying the values of pp and qq we can calculate the required value. But it is some lengthy process and consumes extra time.