Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If the roots of the quadratic equation mx2nx+k=0mx^2 - nx + k = 0 are tan 3333^{\circ} and tan12\tan\, 12^{\circ} then the value of 2m+n+km\frac{2m+n+k}{m} is equal to

A

0

B

1

C

2

D

3

Answer

3

Explanation

Solution

Given, quadratic equation is
mx2nx+k=0m x^{2}-n x+k=0
Roots of the equation are tan33\tan 33^{\circ} and tan12.\tan 12^{\circ} .
tan33+tan12=nm(i)\therefore \tan 33^{\circ}+\tan 12^{\circ}=\frac{n}{m} \ldots (i)
and tan33×tan12=km(ii)\tan 33^{\circ} \times \tan 12^{\circ}=\frac{k}{m} \ldots(ii)
Value of 2m+n+km\frac{2 m+n+k}{m} is
2m+n+km=2mm+nm+km\frac{2 m+n+k}{m}= \frac{2 m}{m}+\frac{n}{m}+\frac{k}{m}
=2+(tan33+tan12)=2+\left(\tan 33^{\circ}+\tan 12^{\circ}\right)
+(tan33×tan12)(iii)+\left(\tan 33^{\circ} \times \tan 12^{\circ}\right) \ldots (iii)
Let (tan45)=tan(33+12)\left(\tan 45^{\circ}\right)=\tan \left(33^{\circ}+12^{\circ}\right)
1=tan33+tan121tan33tan12\Rightarrow 1=\frac{\tan 33^{\circ}+\tan 12^{\circ}}{1-\tan 33^{\circ} \tan 12^{\circ}}
1tan33tan12=tan33+tan12\Rightarrow 1-\tan 33^{\circ} \tan 12^{\circ}=\tan 33^{\circ}+\tan 12^{\circ}
tan33+tan12\Rightarrow \tan 33^{\circ}+\tan 12^{\circ}
+tan33×tan12=1(iv)+\tan 33^{\circ} \times \tan 12^{\circ}=1 \ldots (iv)
By putting the value from E (iv) into E (iii)
2m+n+km=2+1=3\frac{2 m+n+k}{m}=2+1=3